Lighting Condition Adaptation for Perceived Age Estimation

Kazuya UEKI†(a), Nonmember, Masashi SUGIYAMA††, and Yasuyuki IHARA†, Members

SUMMARY Over the recent years, a great deal of effort has been made to estimate age from face images. It has been reported that age can be accurately estimated under controlled environment such as frontal poses, no expression, and static lighting conditions. However, it is not straightforward to achieve the same accuracy level in a real-world environment due to considerable variations in camera settings, facial poses, and illumination conditions. In this paper, we apply a recently proposed machine learning technique called covariate shift adaptation to alleviating lighting condition change between laboratory and practical environment. Through real-world age estimation experiments, we demonstrate the usefulness of our proposed method.

key words: face recognition, age estimation, covariate shift adaptation, lighting condition change, Kullback-Leibler importance estimation procedure, importance-weighted regularized least-squares

1. Introduction

In recent years, demographic analysis in public places such as shopping malls and stations is attracting a great deal of attention. Such demographic information is useful for various purposes including designing effective marketing strategies and targeted advertisement based on customers’ gender and age. For this reason, a number of approaches have been explored for age estimation from face images [2], [3], and several databases became publicly available recently [1], [6].

The recognition performance of age prediction systems is significantly influenced by such factors as the type of camera, camera calibration, and lighting variations, and the publicly available databases were mainly collected in semi-controlled environments. For this reason, existing age prediction systems built upon such databases tend to perform poorly in a real-world environment.

The situation where training and test data are drawn from different distributions is called covariate shift [8], [11],[12]. In this paper, we formulate the problem of age estimation in a real-world environment as a supervised learning problem under covariate shift. Within the covariate shift framework, a method called importance-weighted regularized least-squares allows us to alleviate the influence of environmental changes, by assigning higher weights to data samples having high test input densities and low training input densities. We demonstrate through real-world experiments that age estimation based on covariate shift adaptation achieves higher accuracy than baseline approaches.

2. Proposed Method

In this section, we formulate the problem of age estimation as a supervised learning problem under covariate shift, and then describe our proposed method.

2.1 Formulation

Throughout this paper, we perform age estimation based not on subjects’ real age, but on their perceived age. Thus, the ‘true’ age of the subject \(y\) is defined as the average perceived age evaluated by those who observed the subject’s face images (the value is rounded-off to the nearest integer).

Let us consider a regression problem of estimating the age \(y^*\) of subject \(x\) (face features). We use the following model for regression.

\[
 f(x; \alpha) = \sum_{i=1}^{n_{tr}} \alpha_i K(x, x_{tr}^i),
\]

where \(\alpha = (\alpha_1, \ldots, \alpha_{n_{tr}})^T\) is a model parameter, \(\top\) denotes the transpose, and \(K(x, x')\) is a positive definite kernel [7].

Suppose we are given labeled training data \(\{(x_{tr}^i, y_{tr}^i)\}_{i=1}^{n_{tr}}\). A standard approach to learning the model parameter \(\alpha\) would be regularized least-squares [4].

\[
 \min_{\alpha} \left[\frac{1}{n_{tr}} \sum_{i=1}^{n_{tr}} (y_{tr}^i - f(x_{tr}^i; \alpha))^2 + \lambda \|\alpha\|^2 \right],
\]

where \(\| \cdot \|\) denotes the Euclidean norm, and \(\lambda(> 0)\) is the regularization parameter to avoid overfitting.

Below, we explain that merely using regularized least-squares is not appropriate in real-world perceived age prediction, and show how to cope with this problem.

2.2 Incorporating Age Perception Characteristics

Human age perception is known to have heterogeneous characteristics, e.g., it is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. In order to quantify this phenomenon, a large-scale questionnaire survey was carried out in [15]. Each of 72 volunteers were asked to give age labels \(y\) to approximately 1000 face images. Figure 1 depicts
the relation between subjects’ perceived age y^r and its standard deviation. This shows that the perceived age deviation tends to be small in younger age brackets and large in older age brackets.

In order to match characteristics of our age prediction system to those of human age perception, we weight the goodness-of-fit term in Eq. (2) according to the inverse variance of the perceived age:

$$\min_{\alpha} \left[\frac{1}{n_{tr}} \sum_{i=1}^{n_{tr}} \frac{(y_i^r - f(x_i^r; \alpha))^2}{w_{age}(y_i^r)^2} + \lambda \|\alpha\|^2 \right],$$

where $w_{age}(y)$ is the standard deviation of the perceived age (see Fig. 1 again).

2.3 Coping with Lighting Condition Change

When designing age estimation systems, the environment of recording training face images is often different from the test environment in terms of lighting conditions. Typically, training data are recorded indoors such as a studio with appropriate illumination. On the other hand, in a real-world environment, lighting conditions have considerable varieties, e.g., strong sunlight might be cast from a side of faces or there is no enough light. In such situations, age estimation accuracy is significantly degraded.

Let $p_{tr}(x)$ be the training input density and $p_{tr}(x)$ be the test input density. When these two densities are different, it would be natural to emphasize the influence of training samples (x_i^r, y_i^r) which have high similarity to data in the test environment. Such adjustment can be systematically carried out as follows [8], [11], [12]:

$$\min_{\alpha} \left[\frac{1}{n_{tr}} \sum_{i=1}^{n_{tr}} w_{imp}(x_i^r) \frac{(y_i^r - f(x_i^r; \alpha))^2}{w_{age}(y_i^r)^2} + \lambda \|\alpha\|^2 \right],$$

i.e., the goodness-of-fit term in Eq. (3) is weighted according to the importance function:

$$w_{imp}(x) = \frac{p_{te}(x)}{p_{tr}(x)}.$$

The solution of Eq. (4) can be obtained analytically by

$$\tilde{\alpha} = (K_{tr} W_{tr} K_{tr} + n_{tr} A_{n_{tr}})^{-1} K_{tr} W_{tr} y^r,$$

where K_{tr} is the kernel matrix whose (i, i')-th element is defined by $K_{tr}^{ii'} =$ $K(x_i^r, x_{i'}^r)$.

W_{tr} is the n_{tr}-dimensional diagonal matrix with (i, i)-th diagonal element defined by $W_{tr}^{ii} = \frac{w_{imp}(x_i^r)}{w_{age}(y_i^r)^2}$.

$I_{n_{tr}}$ is the n_{tr}-dimensional identity matrix, and y^r is the n_{tr}-dimensional vector with i-th element defined by y_i^r.

When the number of training data n_{tr} is large, we may reduce the number of kernels in Eq. (1) so that the inverse matrix in Eq. (5) can be computed with limited memory; or we may compute the solution numerically by a stochastic gradient-descent method.

2.4 Importance-Weighted Cross-Validation (IWCV)

In supervised learning, the choice of models (for example, the basis functions and the regularization parameter) is crucial for obtaining better performance. Cross-validation (CV) would be one of the most popular techniques for model selection [9]. CV has been shown to give an almost unbiased estimate of the generalization error with finite samples [7], but such almost unbiasedness is no longer fulfilled under covariate shift.

To cope with this problem, a variant of CV called importance-weighted CV (IWCV) has been proposed [11]. Let us randomly divide the training set

$$Z = \{(x_i^r, y_i^r)\}_{i=1}^{n_{tr}}$$

into T disjoint non-empty subsets $\{Z_t\}_{t=1}^T$ of (approximately) the same size. Let $f_{Z_t}(x)$ be a function learned from $Z_t \backslash Z_t$ (i.e., without Z_t). Then the T-fold IWCV (IWCV) estimate of the generalization error is given by

$$\frac{1}{T} \sum_{t=1}^{T} \frac{1}{|Z_t|} \sum_{(x, y) \in Z_t} w_{imp}(x)\frac{w_{age}(y)^2}{w_{age}(y)^2}(f_{Z_t}(x) - y)^2,$$

where $|Z_t|$ denotes the number of samples in the subset Z_t.

It was proved that IWCV gives an almost unbiased estimate of the generalization error even under covariate shift [11].

2.5 Kullback-Leibler Importance Estimation Procedure (KLIEP)

In order to compute the solution (5) or performing

![Fig. 1](image-url) The relation between subjects’ perceived age y^r (horizontal axis) and its standard deviation (vertical axis).
IWCV, we need the importance weights \(w_{\text{imp}}(x_i') = p_{te}(x_i')/p_{tr}(x_i') \), which include two probability densities \(p_{tr}(x) \) and \(p_{te}(x) \). However, since density estimation is a hard problem, a two-stage approach of first estimating \(p_{tr}(x) \) and \(p_{te}(x) \) and then taking their ratio may not be reliable.

Here we describe a method called Kullback-Leibler Importance Estimation Procedure (KLIEP) [12], which allows us to directly estimate the importance function \(w_{\text{imp}}(x) \) without going through density estimation of \(p_{te}(x) \) and \(p_{tr}(x) \).

Let us model \(w_{\text{imp}}(x) \) using the following model:

\[
\bar{w}_{\text{imp}}(x) = \sum_{k=1}^{b} \beta_k \exp\left(-\frac{\|x - c_k\|^2}{2\gamma^2}\right), \tag{6}
\]

where \(\beta = (\beta_1, \ldots, \beta_b)\top \) is a parameter, and \(\{c_k\}_{k=1}^{b} \) is a subset of test input samples \(\{x_i'\}_{i=1}^{m_{te}} \). Using the model \(\bar{w}_{\text{imp}}(x) \), we can estimate the test input density \(p_{te}(x) \) by

\[
\hat{p}_{te}(x) = \bar{w}_{\text{imp}}(x)p_{tr}(x). \tag{7}
\]

We determine the parameter \(\beta \) in the model (7) so that the Kullback-Leibler divergence from \(p_{te} \) to \(\hat{p}_{te} \) is minimized:

\[
KL(p_{te} \| \hat{p}_{te}) = \int p_{te}(x) \log \frac{p_{te}(x)}{\hat{p}_{te}(x)} \, dx
= \int p_{te}(x) \log \frac{p_{te}(x)}{\hat{p}_{te}(x)} \, dx - \int p_{te}(x) \log \bar{w}_{\text{imp}}(x) \, dx.
\]

We ignore the first term (which is a constant) and impose \(\bar{w}_{\text{imp}}(x) \) to be non-negative and normalized. Then we obtain the following convex optimization problem:

\[
\begin{align*}
\text{max } & \sum_{j=1}^{m_{te}} \left[\sum_{k=1}^{b} \beta_k \exp\left(-\frac{\|x_j' - c_k\|^2}{2\gamma^2}\right) \right], \\
\text{s.t. } & \beta_k \geq 0 \quad \text{for } k = 1, \ldots, b, \\
& \frac{1}{n_{te}} \sum_{i=1}^{n_{te}} \left[\sum_{k=1}^{b} \beta_k \exp\left(-\frac{\|x_i' - c_k\|^2}{2\gamma^2}\right) \right] = 1.
\end{align*}
\]

A pseudo code of KLIEP is described in Table 1. The tuning parameter \(\gamma \) can be optimized based on likelihood cross-validation (LCV) [12].

Table 1: Pseudo code of KLIEP. \(\cdot \) indicates the element-wise division. Inequalities and the ‘max’ operation for vectors are applied in an element-wise manner.

| Input: \(\{x_i'\}_{i=1}^{m_{te}}, \{x_i\}_{i=1}^{m_{tr}} \) |
| Output: \(\bar{w}(x) \) |
| Choose \(\{c_k\}_{k=1}^{b} \) as a subset of \(\{x_i\}_{i=1}^{m_{tr}} \); |
| \(A_{jk} \leftarrow \exp\left(-\frac{\|x_j' - c_k\|^2}{2\gamma^2}\right) \); |
| \(b_k \leftarrow \frac{1}{n_{te}} \sum_{i=1}^{n_{te}} \exp\left(-\frac{\|x_i' - c_k\|^2}{2\gamma^2}\right) \); |
| Initialize \(\beta(>0) \) and \(\epsilon (0 < \epsilon \ll 1) \); |
| Repeat until convergence |
| \(\beta \leftarrow \epsilon A^{\top}(1/|A\beta|) \); |
| \(\beta \leftarrow \beta + (1 - b) \beta b/(b' b) \); |
| \(\beta \leftarrow \max(0, \beta) \); |
| \(\beta \leftarrow / (b' b) \); |
| end |

3. **Empirical Evaluation**

In this section, we experimentally evaluate the performance of the proposed method using in-house face-age datasets.

We use the face images recorded under 17 different lighting conditions: for instance, average illuminance from above is approximately 1000 lux and 500 lux from the front in the standard lighting condition, 250 lux from above and 125 lux from the front in the dark setting, and 190 lux from left and 750 lux from right in another setting (see Fig. 2). Note that these 17 lighting conditions are diverse enough to cover real-world lighting conditions. Images were recorded as movies with camera at depression angle 15 degrees. The number of subjects is approximately 500 (250 for each gender). We used a face detector for localizing the two eye-centers, and then rescaled the image to 64 × 64 pixels. The number of face images in each environment is about 2500 (5 face images × 500 subjects).

As pre-processing, a neural network feature extractor [14] was used to extract 100-dimensional features from 64 × 64 face images. The kernel regression model (1) with the following Gaussian kernel was employed for the extracted 100-dimensional data:

\[
K_r(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right).
\]

We constructed the male/female age prediction models only using male/female data, assuming that gender classification had been correctly carried out.

We split the 250 subjects into the training set (200 subjects) and the test set (50 subjects). The training set was used for training the kernel regression model (1), and the test set was used for evaluating its generalization performance. For the test samples \(\{(x_i', y_i')\}_{i=1}^{m_{te}} \) taken from the test set in the environment with strong light from a side, age-weighted mean square error (WMSE)

\[
\text{WMSE} = \frac{1}{n_{te}} \sum_{i=1}^{n_{te}} \left(y_i' - f(x_i'; \alpha) \right)^2 \frac{w_{age}(y_i')}{w_{age}(y_i')} \tag{8}
\]

was calculated as a performance measure. The training test sets were shuffled 5 times in such a way that each subject was selected as a test sample once. The final performance was evaluated based on the average WMSE over the 5 trials.

We compared the performance of the proposed method with the two baseline methods:

Baseline method 1: Training samples were taken only from...
the standard lighting condition and age-weighted regularized least-squares (3) was used for training.

Baseline method 2: Training samples were taken from all 17 different lighting conditions and age-weighted regularized least-squares (3) was used for training.

The importance weights were not used in these baseline methods. The Gaussian width σ and the regularization parameter λ were determined based on 4-fold CV over WMSE, i.e., the training set was further divided into a training part (150 subjects) and a validation part (50 subjects).

In the proposed method, training samples were taken from all 17 different lighting conditions (which is the same as the baseline method 2). The importance weights were estimated by KLIEP using the training samples and additional unlabeled test samples; the hyper-parameter γ in KLIEP was determined based on 2-fold LCV [12]. We then computed the average importance score over different samples for each lighting condition and used the average importance score for training the regression model. The Gaussian width σ and the regularization parameter λ in the regression model were determined based on 4-fold IWCV [11].

Table 2 summarizes the experimental results, showing that, for both male and female data, the baseline method 2 is better than the baseline method 1 and the proposed method is better than the baseline method 2. This illustrates the effectiveness of the proposed method. Note that WMSE for female subjects is substantially larger than that for male subjects. The reason for this would be that female subjects tend to have more divergence such as short/long hair and with/without makeup, which makes prediction harder [16].

<table>
<thead>
<tr>
<th>Method</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline method 1</td>
<td>2.83</td>
<td>6.51</td>
</tr>
<tr>
<td>Baseline method 2</td>
<td>2.64</td>
<td>4.40</td>
</tr>
<tr>
<td>Proposed method</td>
<td>2.54</td>
<td>3.90</td>
</tr>
</tbody>
</table>

4. Conclusion and Future Works

Lighting condition change is one of the critical causes of performance degradation in age prediction from face images. In this paper, we proposed to employ a machine learning technique called covariate shift adaptation for alleviating the influence of lighting condition change. We demonstrated the effectiveness of our proposed method through real-world perceived age prediction experiments.

In the experiments in Sect. 3, test samples were collected from a particular lighting condition, and samples from the same lighting condition were also included in the training set. Although we believe this setup to be practical, it would be interesting to evaluate the performance of the proposed method when no overlap in the lighting conditions exists between training and test data.

In principle, the covariate shift framework allows us to incorporate not only lighting condition change but also various types of environment change such as face pose variation and camera setting change. In our future work, we will investigate whether the proposed approach is still useful in such challenging scenarios.

Recently, novel approaches to density ratio estimation for high-dimensional problems have been explored [5], [10], [13], [17]. In our future work, we would like to incorporating these new ideas into our framework of perceived age estimation, and see how the prediction performance can be further improved.

References