日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
熱工学,内燃機関,動力エネルギーシステム
気体デトネーション駆動型ガス銃を用いた飛行体加速実験
前田 慎市菅野 祥一郎古藤 亮平小原 哲郎
著者情報
ジャーナル フリー

2015 年 81 巻 822 号 p. 14-00332

詳細
抄録

The gaseous detonation driven gas gun was developed for accelerating the projectile to a supersonic speed. The gas gun was simply consisted of two straight stainless-steel tubes. The one was the detonation tube and the other was the launch tube. The detonation tube was 50 mm inside diameter with 2180 or 4280 mm long, and the launch tube was 5 mm inside diameter with 1040 mm long. Chapman-Jouguet detonation wave was initiated in the detonation tube, and the projectile was accelerated in the launch tube via combustion products behind the detonation wave. The spherical projectile of 4.76 mm diameter was made of high-density polyethylene with 52 mg mass. The driver mixture was stoichiometric hydrogen-oxygen premixed gas with initial pressure ranging from 120 to 450 kPa. The gas gun was successfully operated, and the maximum projectile velocity of 1400 m/s was obtained for the conditions that the detonation tube was 4280 mm long and the initial pressure of the driver gas was 450 kPa. The results of the longer detonation tube demonstrated that the projectile velocity was 1.15 - 1.25 times higher than the case of shorter detonation tube. This velocity change of the projectile could be explained by the pressure increase at the inlet of the launch tube by using longer detonation tube. The reason of the pressure increase has a possibility that the length of Taylor wave behind the detonation wave becomes longer for the case of longer detonation tube.

著者関連情報
© 2015 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top