Transactions of the JSME (in Japanese)
Online ISSN : 2187-9761
ISSN-L : 2187-9761
Dynamics & Control, Robotics & Mechatronics
Analysis of principal rotational motion pattern of lower limb joints during trans-femoral prosthetic gait in daily living environment
Yuichiro HAYASHINobutaka TSUJIUCHIRyuji UNOYuta MAKINOYasushi MATSUDAYoutaro TSUCHIYA
Author information
JOURNAL FREE ACCESS

2016 Volume 82 Issue 835 Pages 15-00525

Details
Abstract

Recently, it is thought that trans-femoral amputees are needed to regain moving pattern by refined rehabilitation program using joint angle and joint moment as kinematic and kinetic conditions on the prosthetic limb with the artificial knee joint. On the other hand, understanding physical feature quantities applied on the prosthetic limb is important for biomechanical consideration of trans-femoral amputees. However, the proposed evaluation method by using singular value decomposition of each joint moment during trans-femoral prosthetic gait has not yet been considered. Besides, when the proposed evaluation method of each joint moment is applied to trans-femoral prosthetic gait, the gait measurement has been experimented concerning only the constrained unnatural gait by laboratory, practical gait as the activities of daily living has not adequately been experimented. In this paper, analysis of principal rotational motion pattern of lower limb joints concerning joint angles and joint moments during trans-femoral prosthetic gait based on the focus on level, upslopes, downslopes, upstairs and downstairs as daily living environment is aimed to clarify comprehensive spatial coordination patterns of a trans-femoral amputee with the prosthetic limb. Each physical parameter is measured by using mobile force plate and attitude sensor. As a result of the experiments and data analysis, singular value decomposition extracts the principal motion patterns from the physical feature quantities and specific points of accurate differences between gait conditions are elucidated. In the end, the effectiveness of biomechanical evaluation of each trans-femoral prosthetic gait pattern by the proposed method is validated.

Content from these authors
© 2016 The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top