日本機械学会論文集
材料力学,機械材料,材料加工
微小変形理論と超弾性構成則に基づく拡張下負荷面モデルの再定式化とリターンマッピング法の開発
井口 拓哉山川 優樹池田 清宏
著者情報
ジャーナル フリー

82 巻 (2016) 841 号 p. 16-00197

詳細
PDFをダウンロード (5642K) 発行機関連絡先
抄録

This paper presents a re-formulation of the extended subloading surface model within the ‘unconventional plasticity’ concept applicable to cyclic loadings. The small strain theory is adopted in the model formulation. The rate-independent von Mises plasticity with nonlinear isotropic and kinematic combined hardening is adopted as a specific prototype model. A fully-implicit stress calculation algorithm based on the return-mapping scheme for the proposed anisotropic elasto-plastic constitutive model is also developed. In addition to the usual additive decomposition of the small strain tensor into elastic and plastic parts, we primarily make a kinematic assumption in which the plastic strain tensor is further additively decomposed into an energetic and dissipative parts. This idea is a small strain counterpart of the one recently adopted in finite strain models with nonlinear kinematic hardening based on the dual multiplicative decompositions of the deformation gradient tensors. The energetic part of the plastic strain is related to the back-stress for kinematic hardening via a hyperelastic-like constitutive equation. This enables the incorporation of Armstrong–Frederick nonlinear kinematic hardening into the model without using a rate-type evolution law for the back-stress. Based on a similar idea, we introduce another additive decomposition of the plastic strain, and thereby a nonlinear evolution for the elastic-core tensor, i.e. a key internal variable in the extended subloading surface model, which stands for a stress state where the material exhibits most elastic responses, can be introduced in a reasonable way. Fundamental property of the proposed model as well as the accuracy assessment of the developed numerical algorithm is demonstrated by numerical examples. A particular attention is focused on the accuracy of stress calculation in unloading and reverse-loading processes during cyclic deformation. An issue on convergence property in Newton-type iteration for the return-mapping scheme is also discussed, and an effective initial value for iteration is proposed.

著者関連情報
© 2016 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top