日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
生体工学,医工学,スポーツ工学,人間工学
カオス性をもつヒト脳波の非線形ダイナミクスに着目した解析手法の提案
上原 賢祐齊藤 俊
著者情報
ジャーナル フリー

2018 年 84 巻 864 号 p. 18-00218

詳細
抄録

Electroencephalogram (EEG) which has a chaotic fluctuation is difficult to analyze. However, quantitative analysis is sufficiently possible since EEG behavior is deterministic dynamics. Our method identifies EEG model parameters experimentally in consideration of chaotic dynamics of EEG. The purpose of this study is to examine the specific characteristics of model parameters. Validation of the method and investigation of characteristics of model parameters were conducted based on alpha frequency EEG data in the relax state and stress state. The results of the parameter identification with the time sliding window for 1 second, the nonlinear mathematical model is shown to produce outputs that can closely match the complicated experimental EEG data. Further, the results showed that the existence of nonlinear term in the EEG analysis is important and the linearity parameter shows a certain tendency as the nonlinearity increases. Furthermore, the activities of EEG become linear on the mathematical model when suddenly changing from the relax state to the stress state. Therefore, it is the effective analysis method that can calculate the degree of concentrate from the dynamics of EEG signal directly. The results suggest that our method may provide useful information in various field including the quantification of human mental or psychological state, diagnosis of brain disease such as epilepsy and design of brain machine interface.

著者関連情報
© 2018 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top