日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
材料力学,機械材料,材料加工
Timoshenkoの近似式を用いた長方形平板のせん断座屈後の応力および変位の評価
古巣 克也尼子 龍幸中川 稔章浜辺 勉青木 典久
著者情報
ジャーナル フリー

2020 年 86 巻 887 号 p. 20-00118

詳細
抄録

In the initial design stage of vehicle development, it is important to estimate the strength of the structure against various loads. It is known that buckling occurs in thin-shell structures before yielding as the load increases, and that the structures can withstand loads even after buckling. The load acting on the beam constituting the vehicle structures may be not only a compressive force and a bending moment but also a torsional torque. Due to this torsion torque, a shear stress acts on the thin shell constituting the beam. In this paper, after shear buckling of a rectangular plate, the approximate expression of buckling deformation presented by Timoshenko as an out-of-plane displacement is used, and the relationship between the out-of-plane displacement amplitude (maximum out-of-plane displacement) and the shear force is determined based on Karman's effective width theory. Using the obtained out-of-plane displacement amplitude, three stress distributions and the maximum value of Mises equivalent stress are derived as a function of shear force. Then, the derived expressions are compared with the computation results of the finite element method (FEM) using shell elements under the boundary condition that does not constrain the in-plane displacement of both sides in the longitudinal direction, and the applicability is examined. As a result, it turned out that the derived relations between the out-of-plane displacement amplitude, the maximum value of Mises stress, and the shear load are less than the absolute value error within 10% in the discussed load range, compared to the FEM computation results. Therefore, the derived expressions are sufficiently effective in determining the yield strength based on the Mises stress.

著者関連情報
© 2020 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top