日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
機械力学,計測,自動制御,ロボティクス,メカトロニクス
人間・ロボット協調操作のための適応勾配降下法を用いた繰り返し学習による可変アドミッタンス制御
山脇 輔トラン ドック リエム泉 文乃八島 真人
著者情報
ジャーナル オープンアクセス

2023 年 89 巻 917 号 p. 22-00243

詳細
抄録

Human-robot cooperation systems can combine the skills of humans and the power of robots, which can improve productivity and flexibility and reduce the physical burden on workers. Admittance control has often been applied to the collaborative task with physical human-robot interactions. However, in the conventional methods, the admittance parameter was adjusted based on heuristic methods. The authors have proposed an iterative learning control scheme that can update admittance parameters to reduce the physical burden on the operator in the collaborative task. However, there was a problem that the learning performance was significantly influenced by uncertain data such as noise and outliers because the steepest descent method, which has a fixed learning rate, is employed in the updating law. Furthermore, the manual learning-rate adjustment by trial and error was required to improve learning performance. In recent years, research on adaptive gradient methods that vary the learning rate has been actively conducted in the fields of machine learning, aiming at improving learning performance. In this paper, we propose a novel iterative learning control scheme with adaptive gradient methods for human-robot collaborative manipulation to improve the learning performance against uncertain data and lower the cost of adjusting the learning rate. The validity of the proposed method is demonstrated throughextensiveexperiments, including 1) cooperative operations in the presence of obstacles and 2) cooperative transport of heavy objects.

著者関連情報
© 2023 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top