日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

仮想的な物理モデルに基づく幾何学的制約付きトポロジー最適化(型成形及びフライス加工のための幾何学的制約法)
佐藤 勇気山田 崇恭泉井 一浩西脇 眞二
著者情報
ジャーナル フリー 早期公開

論文ID: 17-00081

この記事には本公開記事があります。
詳細
抄録

This paper proposes a scheme for imposing geometrical constraints in topology optimization for molding and milling so that optimal configurations that guarantee manufacturability can be obtained, based on the fictitious physical model. First, a level set-based topology optimization method is briefly described, and geometrical requirements for molding and milling are clarified. In molding, molded products must embody certain geometrical features so that mold parts can be separated, and milling cannot proceed unless the desired shape allows tool cutting faces to reach the workpiece. A fictitious physical model described by a steady-state advection-diffusion equation is then constructed based on the requirements. In the fictitious physical model, material domains are represented as virtual heat sources and an advection direction is aligned with a prescribed direction, along which mold parts are moved, or attitude in the case of a milling tool. Void regions, where the value of the fictitious physical field is high, represent either undercut geometries which would prevent the mold from being parted, interior voids that cannot be manufactured, or regions that a milling tool cannot reach. Next, a geometrical constraint is formulated based on the fictitious physical model. An optimization algorithm is then constructed. Finally, in the numerical examples, the proposed method yields manufacturable optimal configurations, confirming the validity and the utility of the proposed method.

著者関連情報
© 2017 一般社団法人日本機械学会
feedback
Top