Transactions of the JSME (in Japanese)
Online ISSN : 2187-9761
ISSN-L : 2187-9761

This article has now been updated. Please use the final version.

Dynamic simulation for rigid body system coupled with hydraulic system considering digging behavior of soil
Shohei UEMURAEtsujiro IMANISHI
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 17-00468

Details
Abstract

This paper presents a dynamic simulation technique for the rigid body system coupled with the hydraulic system considering the digging behavior of the soil. The rigid body system and hydraulic system is modeled based on the Newton-Euler formulation, while the soil is modeled by the discrete element method (DEM) using the cohesive model proposed by Utili and Nova(2008). The co-simulation is carried out for the rigid body/hydraulic coupling system and the soil. Firstly, the digging simulation of the soil for the bucket of the hydraulic excavator is carried out for the cohesive soil and the sandy soil. The digging behavior of the soil and the digging force are discussed. Secondly, the co-simulation technique for the rigid body/hydraulic coupling system and the soil is presented. Finally, the dynamic simulation of the hydraulic excavator is carried out for the digging operation, the behavior of the hydraulic system and the soil is discussed for the cohesive soil and the sandy soil. It is shown that the digging power of the arm driving system for the sandy soil can be reduced by considering the cohesive force. It is clarified that the present technique can evaluate the hydraulic system of the hydraulic excavator for any characteristics of the soil.

Content from these authors
© 2018 The Japan Society of Mechanical Engineers
feedback
Top