日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

非マルコフ散逸粒子動力学に基づく水の粗視化モデルの構築
木原 玄悟吉本 勇太堀 琢磨高木 周杵淵 郁也
著者情報
ジャーナル フリー 早期公開

論文ID: 18-00193

この記事には本公開記事があります。
詳細
抄録

We constructed a coarse-grained (CG) water model based on non-Markovian dissipative particle dynamics (NMDPD) taking into account memory effects. The NMDPD equation of motion was derived from a generalized Langevin equation formulated via the Mori–Zwanzig (MZ) projection operator. We extracted a CG pair potential and memory kernels between clusters comprising 10 water molecules by means of molecular dynamics (MD) simulations. We found that the MZ-guided CG potential followed by an iterative Boltzmann inversion correction resulted in an accurate representation of both a radial distribution function and pressure. Furthermore, in contrast to Markovian DPD, the NMDPD model exploiting MZ-guided memory kernels could reproduce short-time dynamics originating from molecular collisions, which was characterized by decaying nature of a velocity autocorrelation function (VACF). The NMDPD model was also able to reasonably represent the viscosity of the MD system compared to the conventional DPD, where interaction parameters were phenomenologically tuned such that a few macroscopic properties were reproduced, leading to a significant underestimation of a viscosity or Schmidt number. Finally, the differences of the viscosity and long-time behavior of the VACF between MD and NMDPD systems implied the necessity of a more appropriate description for a one-to-one correspondence between a CG particle and a water cluster.

著者関連情報
© 2018 一般社団法人日本機械学会
feedback
Top