日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

3Dプリンティングによる大変形を伴う柔軟翼の空力弾性特性
津島 夏輝玉山 雅人槙原 幹十朗有薗 仁
著者情報
ジャーナル フリー 早期公開

論文ID: 19-00452

この記事には本公開記事があります。
詳細
抄録

Various high-performance structures are ready to fabricate with the advent of the technology for the additive manufacturing. This additive manufacturing technology has a potential to improve manufacturing costs and may help to achieve high-performance aerospace structures. One of application candidates would be a wind tunnel wing model. A wing tunnel model requires sophisticated designs and precise fabrications for accurate experiments, which frequently increase manufacturing cost. At the same time, there are design trends of high aspect ratio wings to enhance flight performance of aircraft. Those wings may undergo large deformation during flights. Therefore, a geometrically nonlinear aeroelastic analysis of such flexible wings plays important role in design. In this paper, manufacturing accuracy and aeroelastic characteristics of an additively manufactured wing model are evaluated numerically and experimentally. The feasibility of such wings to use in wind tunnel tests is also demonstrated. In addition, a geometrically nonlinear aeroelastic analysis model, which have been developed in the previous study, is validated by comparing with results of the wind tunnel test for the additively manufactured highly flexible wing model. The effect of geometrical nonlinearity in aeroelastic characteristics of a highly flexible wing has been observed in the comparison between linear and nonlinear aeroelastic solutions and the wind tunnel result.

著者関連情報
© 2020 一般社団法人日本機械学会
feedback
Top