日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

不連続なリング補強材を有する鋼製原子炉格納容器の座屈強度
三浦 一浩岡藤 孝史中村 光博原田 達之箱田 徳行小江 秀保原 達矢
著者情報
ジャーナル フリー 早期公開

論文ID: 20-00245

この記事には本公開記事があります。
詳細
抄録

A steel containment vessel of PWR (Pressurized Water Reactor) has a circular cylindrical body and a hemispherical head. Since the containment vessel is a thin-walled shell structure, shear and bending buckling might occur in the cylindrical part under the seismic load which exceeds the design load. In the conformity assessment of existing nuclear power plants to the new regulatory standards established by NRA (Nuclear Regulation Authority) of government of Japan in 2013, the assessment of structural strength becomes more severe than that before construction due to the increase of design basis earthquake ground motion. If the existing power plant does not have sufficient structural strength against the seismic load, a countermeasure with reinforcements is required. In this study, the stiffened steel containment vessel is proposed by using the partial stiffening rings which has discontinuous, to avoid the interference with penetrations such as equipment hatch, air lock and piping. A series of buckling tests and elasto-plastic buckling analysis of scaled containment vessel model were conducted to verify the effectiveness of this reinforced structure. Through the buckling tests, it is confirmed that the buckling strength of steel containment vessel was improved by the partial stiffening rings as well as continuous rings. Moreover, the buckling behavior and the buckling load estimated by the elasto-plastic buckling analysis considering the material stress–strain relationship and the initial imperfection shape in test vessel suitably agreed with corresponding test results.

著者関連情報
© 2020 一般社団法人日本機械学会
feedback
Top