高速巻返機に関する研究（第3報前編）*1
一 縦振機構 —

(昭和26年4月4日受理) 会員 唐沢 惟義**

研究目的
1. 巻返機の縦振装置について、縦振度、縦振端硬度、傾動の発生、縦振並に巻取糸速の変動、摩擦、密度等
の諸因子間の関係を求めた。
2. 各巻返機の基本の特性について論じ、プリサイズ巻を生産対象とするカム縦振糸道型巻返機と、レギュラー
巻を生産対象とする溝付縦振軸子を主流としてとりあげた。
3. コーン巻において基本となるべき一般縦振曲線を解析した。

研究結果
1. 非対照形縦振曲線が色々な意味において優っている。
2. カム並にローラーの形式の改善によりカム縦振糸道巻返機の性能は向上された。
3. レギュラー・コーン巻に用いる基本縦振曲線としては、二次曲線が用いられ、これを非対称形として、溝及び
部における縦振を安定させると共に、溝と糸との運動方程式（62）式より溝傾斜角、溝深さ、糸の交又角、縦
振幅、摩擦係数等の関係を得た。

内容
1. 緒 言
2. 縦 振 差（Traverse Lag）
3. 縦振端の硬度
4. 縦振張力と巻取張力
5. スプリット・ドロム並にウイング巻返機
6. 縦振糸道型巻返機
7. 特種ローラ並びにカム装置
8. 縦振用糸道（以上12月号所載）
9. 溝付縦振軸子（以下次号）
10. 糸と溝の運動
11. 交又溝型非交又溝型
12. 一般縦振曲線
13. 縦振軸子の動的釣合
14. 記 号
15. 結 語

1. 緒 言
縦振生産技術の核心をなすものは、編織東変形に関する応力とその流動であって、これに関連した諸因子につ
いて、その生産性を考察せねばならない。従来の編織工
学は、只大綿把に「子供の科学」的な機械的機構や、素
朴概念的な織維形態学といった範囲の解読に殆ど終始
していて、今一步立入った核心的な問題については、何
等合理的な説明もなく、これを現場技術者の勘と経験に
任せていて、術者説訳区々として一定しないものがある
ようでは、学として価をなしていない恐れがある。この
ような意図に添って、本報は巻返機の縦振作用と編織東
の力学的問題を中心に実験の意味する法則について既に
したものである。
経緯化準備としての巻返機を、その縦振機構と巻取機
構の上から分類してみると第2a及び2b表の如くなる。

* On the High Speed Windes. Part 3a: Traverse Motion.
昭和26年11月13日関西工学連合会にて講演
** K. Karasawa, Member. Consulting Engineer.

(711)
2. 表

<table>
<thead>
<tr>
<th>2 a 表</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 達振差差（Traverse Lag）</td>
</tr>
</tbody>
</table>

以上の如き多種多様の型式には、突上げ長一定あり、これを個別的に論ずることでは、その具体的な設計上上の巧営良悪を大いに関係するから、代表的なものを主として解説し、他は省略することとした。
なお、達振機構については、紙面の都合によって次報に掲載することとした。

2. 達振差差（Traverse Lag）

如何なる達振機構にも程度の差こそあれ、達差の達振差差と実際達差面上の差の巻取られた図形の間には、又その各々と計画上の達振差差の間には、図形の差異や時間的達振を生じ得る。それゆえ、向素在巻取スプールでは、不歩と問題視されなかったのでは、更に巻取スプールの成形には、各巻取が面内のある図形を描くために、重要な問題となり無視することは出来ない。

巻取差差若ノ巻取差差と各付するものには、巻取差差側の巻取と巻取面上の巻取の間に、若干の長さがあるため

生する現象であつて（第1種の変形）、丁度1合の空自車を積てて他の自車で引張り走る時、両者の

(第11図) 達振差差の関係図

(712)
なる関係があり，糸のと巻き糸の足の間の長さλが零となるとき，x₀=x₁，y₀=y₁ となり繊振差が無くなる。（糸の弾性は無視である）。

与えられた繊振曲線

\[f_0(x_0, y_0) = 0 \] に対する (42) 式の代数解

\[f_1(x_1, y_1) = 0 \]

を求めるには，一般に困難であるが，この逆はλが一定でない場合でも容易に求められ，図式解も作図すること可能である。

今1例として（λは一定として）

\[f_0 = x_0 - y_0 \tan \beta = 0 \]

の解を求めると（第12図参照）で

\[x = \eta \cos \beta - y \sin \beta \]

\[\eta = \sin \beta + y \cos \beta \]

とおけば（即ち座標軸の回転）

\[dy_1 / dy = (\pm \sqrt{\lambda^2 - y_1^2}) / y_1 \]

となり，

\[\pm y_1 - \sqrt{\lambda^2 - y_1^2} + \lambda \cosh^{-1}(\lambda / y_1) = \text{const.} \]

を得る。この右辺を零として，即ち y₀=0，y₁=λ と y₁=0，y₁=λ より出発して，y₁=0.1λ 程度に，f₀，f₁ 両曲線が接近する n₁ の位置を求めてみると，

\[\eta_0 = 2\lambda \]

となる（第13図参照）。

(第12図) 座標軸の回転

(第13図) 繊振差

\[\lambda \]

の一般的な値（第14図参照）Q.T 式，ユーザーサル #50 式，セレピカ式では

\[\lambda_1 = \sqrt{2R_2G_1 + G_2} \]

(48 a)

ロートコーン，スプールコーン式では，

\[\lambda_2 = \sqrt{2R_2(R_2 - R_1) + R_2^2 - R_1^2} \]

(48 b)

スピリット，ドラム式では

\[\lambda_3 = \sqrt{2R_2(R_2 - R_1) + R_2^2 - R_1^2} \]

となり，共通の性質として巻き玉の外半径 R₂ の増大するにつれて大きくなる傾向がある。具体例として R₂=100 mm；G₁=2mm；λ₂ の R₂=38mm，R₁=37mm；λ₃ の R₂=100mm，R₁=10mm とする

\[\lambda_1 \approx 20mm，\lambda_2 \approx 16mm，\lambda_3 \approx 67mm \]

となり，かなり大きい。

第15図において判るように繊振差があると，糸の繊振幅より巻き玉の幅は小さくなるが，片耳の短絡量 -8l

(第13 図) 各巻返型式の繊振差

は一般に β の小さな値に対して

\[\delta l = \lambda \exp[\ln \tan 2\beta - \cos 2\beta] \]

（50）

と見做してよい。具体例として（49）式の値をそのまま用い，β=0.2 とするとき，A₁，λ₂，λ₃ の各々に対応して

\[\delta l_1 \approx 1.5mm，\delta l_2 \approx 1.2mm，\delta l_3 \approx 1.1mm \]

（51）

となり，大きい値のものは短絡する工夫が必要である。一方λ の値が巻き玉の成長と共に適便に増大するよう，クレードルの寸法構造を適座すれば第2節第2図中のM₈，C，G，N 型の巻玉を接自動的に，特別の装置を用いうずに，生産することも可能である。

第15図を一見すれば判るように，繊振差があると，糸の軸跡として直線的な正しい等ピッチ螺旋カムを使用しても，巻き玉の軸跡は，直線ピッチ伸縮に相当する曲線となり，これを折半して考えれば，近似的には2 種のピッチのものに繊振したものと見做される。従ってこの繊振差を補償するように糸の軸跡を反対に当初から第16図の例の如く2 種ピッチ下部はそれに相当した段変ピッッチとすれば，巻曲曲線は殆ど直線的な等ピッチの軸跡のものとすることが出来る。このような2 種ピッチ，換
3. 線崩壊の硬変

第2種の変形を、線崩壊の硬変と名付ける。この主な原因は、糸の曲げに対する弾性性質が張力に基づくものであって、実際の硬変は前述の線崩壊、前述の余弦の線崩壊における偏塗現象、その他線材曲げの糸の曲げ角の不適、摩耗等によって助長され、乃至は優越的に悪化されるのである。

第17図に示す如く、線崩壊において理想的には、糸はその巻付け角の2倍に相当する角をもって、線ぐり曲げられねばならぬが、余糸曲げの張力を自由な曲げ姿勢をとらんとして、結び方左右各線曲線をなす緩和曲線で接続したような形になる。又余曲げに原因して、巻取曲線の最短曲線を描かんとして、その曲率が大きくなる。これ等の傾向は、一般に弾性率の大きな羊毛、ナイロン、綿の加えて弾性率が著しく、又柔緩曲長の長いもの、断面係数の大なる撚糸等にも著しい。

（第17図）線崩壊説明図

線崩壊における密度の増加は、1）端部が張られていてるため実際を害し、2）糸を線に巻きつける場合には増加張力、切断等の原因となり、巻取様式が接触面に軸の場所には、3）この部分の接触圧力が増してきがためであり、撚絹による失透硬変（Burnt Yarn）の原因となり、又4）撚絹を、張くため発生の一因となるから好ましくない。

今巻玉表面との摩耗抵抗を無視して、線崩壊における線崩壊部の乾熱Qについて、糸を単純弾性体の自由変形として考えてみると、Eulerの線崩壊公式より

\[x = \sqrt{EI/2} \tan \beta, \sin \frac{x}{\sqrt{2EI}} \tag{52} \]

を得る。又この線崩壊部の乾熱Qの長さleは、

\[le = \frac{x}{\sqrt{2EI} \cos \beta}, E \left(\frac{\pi}{2}, \sin \beta \right) \tag{53} \]

となり、ことにEは第2種楕円関数である。更に頂点Pのx座標xpは、(52)式より

\[x_p = \sqrt{EI/2} \tan \beta, \tag{54} \]

となる。若し糸に弾性が全くない場合には、OPQはPQの如くなる管であるから、そのP点のx座標を求めるとき、

\[x_p = \frac{\pi}{2} \sqrt{EI/2} \tan \beta / 2, \tag{55} \]

となる。従って頂点間の距離PP'は、

\[PP' = (\pi/2 - 1) \sqrt{EI/2} \tag{56} \]

となり、\(\beta \)の大なる程大となり、あまり大きくと、糸のEIや質量、巻取り速度、摩耗係数、巻玉中心軸の位置並に方向等に瞬時変動のある際に、撚はずれを起こし易い。一般に線崩壊角\(\beta \)を線崩壊の近くで大きくと、線崩壊の管崩部が線弾性に一ずつだけ頰を出すようにして、線はずれが起こらず良い管だと思われるが、必要に応じて撚端部に余裕することに同様の管がある。それより根本的に、既述の線崩壊と弾形変形による変位を考慮した線崩壊方法であることが重要である。即ち(42),(48),(52)式より線崩壊曲線の解を得ればよい。

更に、この線崩部の平均密度の増加について考えてみると、

\[\frac{\gamma P}{\gamma P'} = \frac{\gamma P}{\gamma P'} = \cos^2 \beta \cdot E \left(\frac{\pi}{2}, \sin \beta \right) \]

\[= \frac{\pi}{2} \cos^2 \beta \left(1 - \frac{1}{2} \sin^2 \beta - \frac{1}{2} \sin^2 \beta \right) \tag{57} \]

となり、これはEI/2的糸質上無関係に、巻取角\(\beta \)のみの関数という面白い結果を得る。ここの\(\beta \)を0とし、た時OP=OP'なるに係らず、\(\gamma P/\gamma P' \)の値は1となる、\(\pi/2 \)なるのは、\(\gamma P/\gamma P' \)が\(\pi/2 \)に等しいためである。\(\gamma P/\gamma P' \)は、\(\beta \)が大くなるに従って小さくなり、\(\beta = \pi/2 \)で収束に零となる。即ち

\[\beta = 0.05 \pi, 0.10 \pi, 0.15 \pi, 0.20 \pi, 0.25 \pi, 0.30 \pi, 0.40 \pi, 0.45 \pi, 0.50 \pi \]

\[\gamma P/\gamma P' = 1.57, 1.52, 1.38, 1.18, 1.00 \tag{57} \]

\[\beta = 0.25 \pi, 0.30 \pi, 0.35 \pi, 0.40 \pi, 0.45 \pi, 0.50 \pi \]

\[\gamma P/\gamma P' = 0.68, 0.44, 0.24, 0.10, 0.02, 0 \tag{57} \]

となり、\(\beta = 0.185 \pi \sim 33.3^\circ \)以上は、端部の平均密度が的に小さくなる。この傾向は既述の線崩壊と相関するように見るが、これは線崩壊全体の\(\beta \)に関する問題で\(\beta \)の増大と共に線崩壊部の長さが短くなることに原因するのであるから、端部の線崩壊式はこれとは別の問題である。

4. 線崩壊張力と巻取張力

交織巻（チーズ）巻取機においては、線崩壊サイクルが巻取り速度に較べて大きいため、線崩壊のために張力、巻取りの変動があり、線崩壊が5→6→8→10 inとハイリップトラッシュバージョンとなるついて、この変動が巻取系
速を抑制する重大要素となってくる。このような糸速、張力の変動を、純然たる揺振によるものと、巻玉の形状変化によるものとに分けて考えてみよう。

揺振のための糸速の変動は、1）揺振軸位置 \(x \) による糸の経路の変化。2）卷玉、軸子振等に対する糸の接触曲角度の変動により、巻仮のための糸速の変動は、3）コーン巻の如く揺振軸位置によって巻玉半径 \(r_g \) に異なる場合の、4）巻糸角 \(\beta \) の揺振位置による変化、5）変速回転による変動等が主な原因となっている。

揺振軸付軸子等による揺振軸位置 \(x \) に対する糸速 \(s_z \) は一般に

\[
 s_z = 2\pi r_g(x), \sec \beta(x), \tan \beta \frac{d}{d} (t)
\]

\[
 \pm 2\pi r_g, n_a (t), x \tan \beta(x), (h^2 + x^2)^{-1/2}.
\]

の如く与えられる。（58）式右辺第1項は、前記 3）、4）、5）の原因に対応する糸の巻仮速度を示し、第2項は揺振軸の \(dx/dt \)、\(d/dx \) より算出したその変動を示したもので、前記 1）の原因を意味する。第1項に関する速度変動は、巻玉の形状変化に根本的に由来するものであるから、糸の強度等の性質に応じて、コーン角度、揺振幅、巻糸平均速度を選択する外に選ばない。第2項の負は、揺振軸において急に正より負に転するので（第18図参照）、これは交差糸の多きにともない最大の欠点であるが、一端揺振した揺振軸における巻糸の配置変動を張力で崩さない作用があり、走行糸に対する糸張力の急変動という欠点は、逆に巻糸端部の成長と安定の利点ととなっている誤である。これは又、先端の端部形成の理論に従えば、過度の変動を緩和することができる、非対称揺振方法を用いれば更に崩さないことが出来る。

即ち、第18図 c）、d）に示す如く、揺振軸が早廻りモーションをつっているから、揺振軸位置 \(x \) は卷玉半径 \(r_g(x) \) に関する糸速は同一であっても、時間的に、又巻糸角 \(\beta(x) \) の関係から、糸速 \(s \) の大なる場合には、その加速度 \(ds/dt \) が小さくなり、両者の張力に及ぼす効果が相殺される効果がある。

Barber-Colman の巻廻機が、現実に 1200～1600 yd/min という超速度で巻廻糸を行っているのは、巻糸の波矢も巻糸一本中の糸切切り率 2～5％といったものでも糸質が非常に良いことに以外に、揺振幅を狭く、コーン巻を用いず平行走だち、又木板の外側を大きくして糸の旋回抵抗の変動を少しき、屈折方法の無慣性張糸方法によってついていることである。又巻糸の用途が限られ、良質の糸を必要とする従来は、経糸巻の生産方式としては優れている。

糸の経路長の変動を、そのスパン間等に干渉装置を設けて軽減する方法もあるが、一般に張力が増大したり、余計な曲度のために糸を摩耗疲労させる。又色々な意味において、糸速や張力の変動が必ずしも有害ではなく、例えば少量の張力の変動は、張力の絶対値が糸の平均値の範囲内であるとして、動的に糸の弱点、摺り甘等を断面することが出来るので、その効果を考えねばならない。

（58）式第2項は又スパン \(h_r \) を長くすることによって軽減するが、糸経り取扱上の事情からあまり長く出来る事は少ない。普通 \(h_r/l = 2 \) より小さくては糸速変動が過度になる。又 \(2 \) サイドの場合には \(h_r/l = 2.5 \) 以上にとらねばならぬ。

糸速の変動は、経上の如く又第18図に示す如く複雑で、一言に表現することが出来ぬ。実際には図示例の如き比率の変動がある場合も少なくない。実際例において、糸速の最大値と最小値の比が 5 ～10という場合もある。又糸速と張力間の一義的関連性はないとあり、糸速の変動が不要であることにと思うべきである。

(715)
5. スプリット・ドラム並びにウィング巻返機

スプリット・ドラム式やウィング式の巻返機では第19図に示すように、糸が絞られるために、a_1、a_2、a_3 と3 繰の屈折角を、これ等の屈折角は絞返糸が絞返線に近付く程までも増加するために、又係の絞返長も長くなるために、糸の張力変動が減ずるように（Q-T 式の約3～5 倍）、糸の軸切摩擦の度は著しい。これを解決するためには、ドラム若しくはウィングの直線 $2R_a$ を成べく大きくし、絞返直角を小さくし、且絞返スパン hr を大きくとればならぬ。一般に、$l=150$ mm、$s=400$yd/ min において、安定に巻返りされるためには $hr \geq 2l$、$ad = \tan^{-1}(l/R_d) \geq 0.5$、…（59）

束糸 $hr + 2Ra = 480$～520 mm となり、管線の位置が巻返より深く遠くなる、取扱上不便で能率が低下する。

（第 19 図）スプリット・ドラム (a) とウィング (b) 巖返機

これ等の欠点を改良するため各部の配列を Q-T 式にしたもの、又 Q-T 式の 2～3 倍に及ぶ絞返長の変動のみを補償する支持型も製品として市場に現われている。

これ等の巻返方式は、糸の屈曲のみならず、織線と糸はさらに直接的に摩擦するため、糸が毛羽立立しく、潜在的に弱められ、永年使用すると織線が断面の不均一に摩擦する欠点がある。又切断糸がドラム、ウィング内外の軸やシャフトに巻付けた場合には、中々取除き難く、時にはシャフトを折曲げたりすることもあり、作業者がスポーツ、羽、糸導入孔で注意の怪我をすることもある。回転動力を節約し、変速回転をさせるためには、成幼後作らねばならぬから、構造が重要となり、電気抵抗による動力損失も大きい。左右両側が別々のものは変速回転による事故が起こる可能性もある。巻返変更は構造上一般に長く、ドラム式では巻返の成長について増大する。巻返のあるため、番手によって密度増が増大する場合もある。

6. 糸巻送達型巻返機

巻返作業は、糸巻中と転動するローラに連結した巻返送達装置によって行われ、前言に述べた如き高さがあるが、現在導入実用されているものは、非吹送式である。

タイブトロバース型をもって基調巻返機で用いられるタウの巻返変更は、平行巻取には一般に等ピッチテヘリアル曲線が多く、コートネースには等ピッチ曲線そのままのもので、変更ピッチテヘリアル曲線のタウを用いて（第 20図）、巻取の恒常巻返の要求に応じたものとする。その理由については後述することとする。

（第 20 a 図）巻付極度巻子巻返装置
（第 20 b 図）タウ巻取り送達装置

タウ巻取において共通した第一の問題は、巻取変更、即ち折返し点の前後における変型と、これを通過する転動ローラ装置の変動状態である。第21図に示したようにローラ軸心は、その外円周面が糸の一方の側線に押されつつ巻取線Aに到達した後、他方の側線によって反対方向に押されるべくローラ外円面が接触するまで（A→B→C）には、1）ローラ外円周が消間端Pを側軸の回転中心として回転する（A→B）時間と、2）ローラ
（第21図）カム駆動盤におけるローラの運動

と溝との滑間 G_c が原因となって停止する行程（B→C）を回転する時間は、大まかに歯振端においてローラが停止しているものと見做し得る。この停止時間 t_e は次の如くなる。

$$t_e \approx \frac{G_c \sec \beta_a + r_s \sin \beta_a}{v_c}, \quad \cdots \cdots (60a)$$

$$\geq \frac{2r_s \sin \beta_a}{v_c}, \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (60b)$$

歯振端においてカム溝とローラ外側面間に発生する衝撃力 F_c は

$$F_c = 2Mr_v \sin \beta_a / t_e$$

$$= 2Mr_v^2 \sin \beta_a / (G_c \sec \beta_a + r_s \sin \beta_a)$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (61)$$

を基準として考えてよい。圧の衝撃力は、往復質量M_Rに比例し、歯振速度（ω_c）の略自乗に比例して增大する。ローラ半径 r_s や滑間 G_c が大きいと衝撃力は小さくなるが、他方停止時間が永くなり、この間に歯振装置の自由振動が誘起される。以上はこの型の回転盤の歯振装置の基本的性能を最もよく物語っている事実である。従って衝撃力 F_c は、Hertz の接触圧力論によって理解され得る接触盤の応力に関連して、カム圧にローラの寿命を規定するから、歯端カム周速度 v_e にかかわらず歯振速度に実用上の限度があり、これの適正を知ると振動と騒音、ひいては歯折れ、巻取り耳部の不正確、密度増大、毛羽立、摩損面を発生することになる。

以上のよう考察から、カム・ローラ型の回転盤の高速精密化の手段としては、往復質量を極度に軽減しなければならないから、構造の複雑化、構造の剛性の増大、保全経費の増大を抑えて、1箇所にカム機構を装着した回転盤が、近年一般に採用されるに至った。

7. 特殊ローラ並びにカム装置

カム溝側面の周速度は、溝の外周部と底部とでは、一般的設計例で約10%位の差があるから、円弧形のローラとの接触部には、必然的にストラップが在る訳になる。このためローラ外側とカム溝面との摩耗がより一層早められ、ローラビンにはスリップの曲げモーメントも働き、その損耗の原因となっている。この欠点を改良するには、第22図に示すように、a) ローラを分割するか、b) 亀裂scopeの理屈のようにテーパーローラを使用すればよい。テーパーローラは仮に外側や溝が摩耗しても、錐子端はライナ等によって滑潤を絶えず調滑出来るから永く使用に耐え、完全に機能し得る利点がある。なお、テーパーローラには接触圧のピッコ力向の力があり、そのスラストのため、ローラの回転が重くなる欠点がある。第22図各（実験型）は、一部に円筒面を設けたテーパーローラで、滑潤の存在を嫌う歯振端では、テーパーローラとして機能し、滑潤のあつても着換えない中央部では円筒ローラとして働くようにすれば、ローラ外周部に広く曲げモーメントも少なく、動力の損失、振動の発生を軽減し、カム溝の切削も容易で保全が楽になる。異形変速も一部高速化され得る。

（第22図）ローラ並びにカムの各種改良型

カムには、固定傾斜板型、ハート・カム型等種々の機構が夫々利用されているが、高速精密を要する場合には螺旋溝型の方がよい。螺旋溝型には、溝卷回数を多くしてカムの外径を小さくし、装置の容積を小さくして、連結棒を使用せず歯振系を直接往復運動させ、往復質量を軽減させ、曲面回転軸を踏めて動力消費を節約する方法がある。この場合最も問題となるのは溝交又部の通過方法であって、他動的方法と自動的方法とある。第22図各は前者の例で、ローラが歯振端の1箇所中に在る間に溝の連結を切換える方法である。第22図各は鉄型にローラを附し（実験型）交又溝の通過は自動で切換し、歯振端では主としてローラより振動し、ローラは偏角により方向を転換させられる。ローラの尖端をテーパとすれば。
8. 締 棟 用 材 道

カム型端板機の縦材裁道としては、溝付端道、孔端道
スチルワイヤー等の型式があり、使用材質としては次の
ようなものがある。

- 一般耐熱材（燃料用以外は無）
- 磁器（ステアタイト、メラライト等
 一般磁器、高炭素鋼、合金鋼快速度鋼等

合成樹脂……フェノール樹脂、ビニル樹脂、アルタイト
（複数以上の製品）等

締道材としては、印を付したものが推奨してよい。要
するに表面滑移で余に対する摩擦を減らす必要がある。
価格を含めて考慮すると、ステアタイトのような緻密な
特殊磁材が望ましいが、国産においてはこの方面の工業
化が進み、米等に較べて差し支えなく進んでいる。磁性端道の
溝の形としては、V型、幅広U型、幅狭U型、ハード型
等が使用されているが、溝は挾れが、縦材裁硬度を減らす
目的には、溝の狭いU型

溝が最もよい。近道米国で製作されているAl-esi-mag
等では、0.2〜0.3 mm 位の溝型のものが製作され実用
化されている。端材の特性としては、摩擦抵抗性として、1）硬度の
高いこと、2）摩擦抵抗力が高く端材のエネルギーの差になる
こと、3）微粒化、耐食性も必要。面が滑

第3表 溝付端子材の特性

<table>
<thead>
<tr>
<th>材 質</th>
<th>動摩擦係数 µd</th>
<th>密 度</th>
<th>誘電係数</th>
<th>硬 度</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ウ タ ル 上</td>
<td>0.08〜0.14</td>
<td>2.6〜2.9</td>
<td>4.6〜8.0</td>
<td>30〜40</td>
<td></td>
</tr>
<tr>
<td>ラ ウ タ ル</td>
<td>0.08〜0.13</td>
<td>2.6〜2.9</td>
<td></td>
<td>20〜35</td>
<td>表面層の厚さが不均等な影響</td>
</tr>
<tr>
<td>プ ル マ イ ト</td>
<td>0.10〜0.16</td>
<td>2.6〜2.9</td>
<td>5.9〜6.0</td>
<td>40〜60</td>
<td></td>
</tr>
<tr>
<td>鈴 鉄</td>
<td>0.09〜0.13</td>
<td>7.1〜7.3</td>
<td>4.0〜6.8</td>
<td>30〜40</td>
<td>湿潤破面に耐えず</td>
</tr>
<tr>
<td>磁 器</td>
<td>0.12〜0.19</td>
<td>2.3〜2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ペ ー ク ラ イ ト</td>
<td>0.08〜0.15</td>
<td>1.3〜2.0</td>
<td>4.5〜8.0</td>
<td>30〜40</td>
<td>摩耗、起電性の高</td>
</tr>
<tr>
<td>プ ル マ イ ト 9</td>
<td>0.08〜0.14</td>
<td>1.2〜1.25</td>
<td>4.5〜6.9</td>
<td>53〜58</td>
<td>耐化性不明</td>
</tr>
<tr>
<td>ヴ イ ニ ル、レ ジ ジン</td>
<td>0.08〜0.14</td>
<td>1.35</td>
<td>4.0</td>
<td>30〜40</td>
<td>耐化性不明、燃焼性</td>
</tr>
</tbody>
</table>

（178）