技術解説

ピッチ系活性炭繊維「f-AC」の性能特性

田井 和夫*
中井 浩一郎**
進戸 規文***

1. はじめに
ハイテク時代の昨今、新素材開発への期待は大きいつ、活性炭繊維（f-AC）は粉末活性炭（p-AC）、粒状活性炭（g-AC）に次ぐ第3の活性炭として誕生した。いわば吸着材料の新素材である。f-ACの特徴は粒状活性炭（p-AC, g-AC）に比較して吸着性能に優れているばかりでなく、繊維素材としての耐加工性を備えていることである。種々の形状に加工されたf-ACの先端複合材料は高性能吸着材料エレメントとして幅広い用途への展開が期待されている。本報ではユニチカ㈱と大阪ガス㈱が共同開発した石炭ピッチ系f-ACについて解説する。

2. ピッチ系活性炭繊維の製造方法
ピッチ系活性炭繊維（f-AC）の製造プロセスを図1に示す。製造プロセスは、①紡糸ピッチの調製、②ピッチの溶融紡糸、③ピッチ繊維の不融化解、④不融化解、⑤紡糸のアスファルト、の5工程をもってなる。
紡糸ピッチの調製工程はf-ACの性能発現に適した特殊ピッチ（黒鉛化炭素前駆体）を合成するものである。ピッチの溶融紡糸工程は合成繊維の紡糸技術を基礎とするものであるが、ピッチの性状に合わせた修正が必要であった。不融化解はピッチ繊維を酸化雰囲気下で熱処理し耐熱安定化させる工程である。賦活工程は不融化解、ピッチ繊維を賦活ガス雰囲気下で高温反応させ、f-ACの表面に吸着部位となる細孔を数多く生成及び開孔させるものである。

3. ピッチ系活性炭繊維の性能特性

3.1 細孔分布と基本吸着性能
f-ACの吸着性能発現は繊維表面に開孔する数の細孔（ミクロポア：r < 20Å）に起因するものであると考えられ、細孔分布データはその吸着性能を予測するために重要である。図2にf-AC 3銘柄（A-10, A-15, A-20）の細孔分布測定結果を示す。測定はカンタクローム社製「オートソープ」を自動ガス吸着測定装置を用いて測定を行うループptのプロット法にて、図2左はB.J.H.法でそれぞれデータ解析した細孔分布曲線である。両図よりf-ACにはミクロポア域に多数の細孔があり、製造条件に従ってその細孔数と分布状態を制御できることがわかる。

表1にf-AC 3銘柄（A-10, A-15, A-20）の標準的な吸着性能を示す。ここで比表面積及び細孔容積は前述の「オートソープ」で測定したものである。銘柄A-10, A-15, A-20はそれぞれ比表面積1,000, 1,500, 2,000 m²/gに対応している。ヨウ素吸着性能、メチルブルー脱色力、トルエン平衡吸着性能、pH及び発火点はJIS活性炭試験方法（K 1470, K 1474）に従って測定した。表よりf-ACが著しく高性能の吸着特性を持っていることが明らかである。

*K. Tai, ユニチカ㈱中央研究所化成品研究部
**K. Nakai, ユニチカ㈱中央研究所化成品研究部
***N. Shindo, 大阪ガス㈱総合研究所
3.2 気相吸着特性

図3は、上からそれぞれf-ACのトルエン、トリクロルエタン及びエチルアルコールに対する吸着性能を示す吸着等温線である。吸着等温線の測定は、JIS規定の溶媒平衡吸着性能試験法に準じ、溶剤蒸気濃度を変化させ、それぞれに対応する平衡吸着量を求めることにより行った。

トルエンの場合、濃度上昇と共に平衡吸着量が増加し、比表面積が高いほど平衡吸着量が多い（A-20 ＞A-15＞A-10）。ベンゼン、キシレンなどに対しても同様の吸着挙動が認められ、芳香族系有機溶剤の回収にf-ACが効果的であることが判る。トリクロルエタンの場合塩素基の存在にもかかわらず、トルエンに対して同様の吸着挙動が認められた。トリクロルエチレン、テトラクロルエチレンも同様であり、これらの有機塩素系溶剤の吸着にf-ACが適していることが明らかとなった。

エチルアルコールの場合も濃度上昇と共に平衡吸着量は増加するが、トルエンやトリクロルエタンの場合と異なり、低濃度域で比表面積と平衡吸着量の関係の逆転がみられる。f-ACを実用に供するに当たって、被吸着物質が何で、どの濃度域で使うのかを検討することが重要であると思われる。

図4はオゾンに対するf-ACの破壊吸着特性である。オゾン濃度の測定は化学分析法（酸化還元滴定）で行った。図より比表面積が増加すると共に破壊時間が延びることが明らかになった。吸着試験後のf-ACについて、機器分析（FT/IR、ESCA）を行ったところ、オゾン分解による変質が認められた。従って、強酸性物質の吸着にf-ACを適用する場合、寿命を配慮した利用技術の工夫が必要と考えられる。
3.3 液相吸着特性

図5は水中のトリハロメタン（クロロルム）に対するf-ACの吸着特性を示す吸着等温線である。
図よりA-10、A-7（特殊銘柄）が比表面積の高いA-15、A-20に比較してより高性能を示しており、
水中のトリハロメタンがf-ACにより効果的に除去出来ることがわかる。図6は水中のトリクロルエチレンに対する吸着等温線である。この場合も、吸着性能はA-7、A-10、A-15の順に高性能になった。
トリクロルエチレンを初め有機塩素系溶剤の地下水汚染が問題になっており、f-ACによる除去が期待される。

図7はf-AC、A-15の水中染料に対する吸着等温線である。被吸着染料としては骨格構造が同じもので、スルホン基1個のFast Red A3個のAmar-
anth, 4 個の Ponceau 6 R を用いた。図よりスルホン基の数が吸着挙動に少なからず影響することがわかった。

図 8 (A), (B) は水道水中的代表的臭気物質 2 種、ジエオスミン、メチルイソボルネオールに対応する吸着速度データである。図より f-AC の吸着速度が著しく速く、水の精製に適していることが明らかである。

### 3.4 繊維物性と性能特徴

表 2 に f-AC 3 銘柄の標準の繊維物性を示す。測定は JIS 炭素繊維試験方法 (R 7601) に準じて行い、表より、f-AC を繊維素材として加工する場合その加工操作に耐える力学特性水準であることがわ

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>A-10</th>
<th>A-15</th>
<th>A-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>繊維径</td>
<td>μm</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>強度</td>
<td>kg/mm²</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>彫性率</td>
<td>kg/mm²</td>
<td>800</td>
<td>540</td>
<td>370</td>
</tr>
<tr>
<td>伸度</td>
<td>%</td>
<td>2.8</td>
<td>2.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>

かる。

f-AC の性能特徴を整理すると、以下の通りである。

1. 比表面積が大きく高吸着性能である。
2. 細孔分布の制御により幅広い吸着特性が得られる。
3. 吸着速度が大きい。
4. 再生再使用が可能である。
5. 炭酸の発生が少なく環境を汚さない。
6. 軽量で取扱いが容易である。
7. 種々の形状に加工できる。

### 4. ピッチ系活性炭繊維の利用技術

#### 4.1 複合材料

f-AC は繊維素材であると言う属性を利用し、繊維の加工技術を活用することにより、種々の形態の複合材料に加工することが出来る。図 9 に f-AC 複合材料製造のプロセス概要を示す。プロセスは f-AC と熱可塑性繊維との複合による成形加工法と、

![](image)

図 8 水中臭気物質に対する f-AC の吸着速度データ：A. ジエオスミン、B. メチルイソボルネオール

P 359
図9  f-AC複合材料の製造プロセス

図10  f-AC複合成形体

4.2 用途と応用製品

f-ACは従来炭（p-AC, g-AC）がすでに用いられている用途分野を初め、既存の優れた性能特徴を活かした新規分野への展開が期待される。本報では我々の生活と密接な関係のある悪臭、空気汚染及び水質対策用途への適用について簡単に述べる。

悪臭発生の原因は指定悪臭物質を初め、種々の
の願は強く、p-AC、g-AC，又はf-ACを使った
水処理が市販されている。図14は業務用浄水器の例
である。高層ビルディングでの水の高次利用にも
f-ACの複合成形体の吸着精製エレメントを活用す
ることが出来る。

図13 脱臭精製製品

図14 業務用浄水器

5．おわりに

ビッチ系活性炭繊維「f-AC」の製造方法、性能
特性及び利用技術について概説を終に当り、
f-ACが吸着材分野の新素材として幅広い用途に活
用されることを期待してやまない。なお、詳細の照
会はユニチカ株式会社（TEL.03-246-75
84又は06-281-5248）, 大阪ガス株式会社
プロジェクトチーム（TEL.06-452-3231）にお願いしたい。

引用文献
1) 田井、進戸：エネルギー資源, 7, (2), 1986
2) 田井、進戸：高分子加工, 35, (8), 384, 1986
3) 杉本、進戸、田井：機能炭, 40, 987, (3), p.153
4) J. H. deBere, J. Colloid, Interface Sci., 21, 405, 1966
73, 373, 1951

田井 和夫（たいかずお）
大阪大学大学院理学研究科博士後期課程修了
ユニチカ株式会社研究所長

進戸 省文（しんのりぶみ）
東京大学工学部化学科修士課程修了
大阪ガス協同組合研究所特別
プロジェクトリーダーとして

中井浩一郎（なかいういちろう）
昭和37年日本レヨン入社
同56年ユニチカ株式会社研究所にて
研究に従事、同61年活性炭製造
研究に従事、現在に至る。