Study on a Lunar Approach Strategy
Tolerant of a Lunar Orbit Injection Failure *

By Yasuhiro KAWAKATSU,1) Masayuki YAMAMOTO2) and Jun’ichiro KAWAGUCHI1)

1) Japan Aerospace Exploration Agency, The Institute of Space and Astronautical Science, Sagamihara, Japan
2) Mitsubishi Space Software Co., Ltd., Tsukuba, Japan

(Received February 14th, 2007)

Discussed in this paper is a lunar approach strategy tolerant of a lunar orbit injection (LOI) failure. LOI is one of the most critical events for a lunar orbiting mission. If LOI is not performed, the spacecraft flies by the moon, and in the worst case, it escapes not only from the moon but also from the earth, which leads to mission failure. The proposed strategy is to design a trajectory so as to re-encounter the moon even when LOI is not performed. It provides an opportunity for mission recovery even in the case of an unexpected fly-by. A trajectory design procedure is introduced and an example of the designed trajectory is shown.

Key Words: Lunar Mission, Trajectory Design, Lunar Orbit Injection, Failure Recovery

Nomenclature

\(i \) : inclination of a spacecraft’s orbit
\(m, n \) : natural number
\(\mathbf{n}_m \) : orbit plane vector
\(P \) : orbit period
\(P_m \) : orbit period of the moon
\(R_m \) : radius of the moon orbit
\(r \) : radius of a spacecraft’s orbit
\(r_p \) : perilune radius of a spacecraft’s orbit
\(v \) : magnitude of \(\mathbf{v} \)
\(v_m \) : velocity of the moon
\(v_{\text{pre}} \) : velocity of a spacecraft before swing-by
\(v_{\text{post}} \) : velocity of a spacecraft after swing-by
\(v_{\text{in}} \) : incoming excess velocity of a spacecraft
\(v_{\text{out}} \) : outgoing excess velocity of a spacecraft
\(X, Y, Z \) : inertial coordinate system
\(x, y, z \) : local coordinate system
\(x_g, y_g, z_g \) : ballistic plane coordinate system
\(\alpha_{\text{syn}} \) : angle between \(\mathbf{v}_m \) and \(\mathbf{v}_{\text{in}} \) (or \(\mathbf{v}_{\text{out}} \))
\(\Delta v \) : velocity increment
\(\gamma \) : angle between \(v_m \) and a spacecraft’s orbit plane
\(\theta_{\text{max}} \) : the maximum deflection angle
\(\theta_{\text{dp}} \) : deflection angle at a swing-by

1. Introduction

With the opening of the new century, the moon is attracting attention again as a target of space exploration. SMART-1 launched by ESA, which orbited and impacted on the moon, is the lead-off visitor to the moon of the new century. Japan is developing SELENE, which is planned to be launched in summer, 2007. China and India are planning their first missions to the moon, and the United States is refocusing on human exploration of the moon.

A lunar orbit injection (LOI) is one of the most critical events for lunar orbiting missions. If LOI is not performed, the spacecraft flies by the moon, and in the worst case, it escapes not only from the moon but also from the earth. As shown in Fig. 1 and Fig. 2, a typical lunar transfer sequence, drawn in an earth-centered inertial coordinate system, is depicted. The spacecraft is accelerated and escapes from the earth. The sequence of a typical lunar transfer can be depicted as Fig. 2.

One method to avoid this kind of risk is to use a gravity capture by the moon\(^1\). This method was firstly demonstrated by HITEN, and it was planned to be used by LUNAR-A. In this method, the perturbation from the earth’s gravity is effectively utilized to decelerate the spacecraft on the lunar approaching trajectory. Finally, the spacecraft is captured by the moon and orbits around the moon naturally without any active maneuver, which results in a complete avoidance of the risk mentioned above. However, this method is inconvenient because it requires a long process and duration to prepare for the lunar approaching condition to be captured.

Another method to avoid the risk is to design a lunar approaching trajectory considering the case that LOI is not performed. That is to say, to design the trajectory so as to...
provide an opportunity for the mission recovery even in the case of an unexpected fly-by. An example of this method is the free return trajectory used in the Apollo program. By the usage of this trajectory, the astronauts would have been able to come back safely to the earth even in the case of LOI failure. However, as this was the case of a manned mission, returning to the earth was considered as the mission recovery.

Fig. 1. An example of a lunar transfer sequence.

Fig. 2. The sequence flow of a typical lunar transfer.

Discussed in this paper is a lunar approach strategy based on the latter risk avoidance method. That is to say, a trajectory is designed to re-encounter the moon even in the case that LOI is not performed (Fig.3(a)). In other words, a trajectory is designed so that the spacecraft is injected into the moon synchronous orbit (MOO) after the fly-by even in the case of LOI failure. In the case that LOI failure is due to a transient anomaly (such as an operation failure, a configuration setup delay, etc.), to re-encounter the moon provides another opportunity for LOI, which leads to an almost perfect mission recovery (Fig.3(b)). In the case that the injection failure is due to a permanent anomaly (such as main engine trouble, etc.), a drastic restructure of the trajectory may be required for the mission recovery. Even in this case, to re-encounter the moon provides the most effective means of an orbit maneuver, that
is, a lunar swing-by (Fig.3(c)). From this point of view, proposed in this paper is a lunar approach strategy tolerant of LOI failure. In this strategy, the condition of injection into the mission orbit, and the condition of injection into MSO are to be satisfied simultaneously. LOI which satisfies these conditions simultaneously is called “Robust LOI” hereafter (Fig.3(d)). Restrictions and expense to adopt this strategy are discussed in the following sections.

2. Robust LOI at First Encounter

2.1. Injection into MSO

MSO is a geocentric orbit whose \(P \) is expressed as

\[
P = \frac{m}{n} P_m \tag{1}
\]

where \(m \) and \(n \) are assumed to be irreducible. If a spacecraft is injected into MSO at the position of the moon, it will re-encounter the moon after \(m \times P_m \) (here, the gravity of the moon and the other perturbations are neglected.) Even if LOI is not performed normally, if the spacecraft is injected into MSO after the fly-by, it will re-encounter the moon and will be able to retry LOI.

To investigate the condition to inject into MSO, a local coordinate system is defined as Fig. 4. The origin of the frame is the moon, \(x \) axis is in the direction of the earth, \(y \) axis is perpendicular to \(x \) axis and the north pole direction of the moon, and \(z \) axis is perpendicular to \(x \) and \(y \) axes. For a simplification, \(y \) axis is assumed to be exactly opposite to the velocity of the moon, and \(z \) axis is assumed to be identical with the north pole direction of the moon.

2.2. A mission requirement and MSO injection

To discuss the approaching condition to attain MSO, the ballistic plane coordinate system is introduced. \(y_{\infty} \) axis is in the direction of \(v_{\infty} \), \(x_{\infty} \) axis is perpendicular to \(y_{\infty} \) axis and the north pole direction of the moon, and \(z_{\infty} \) axis is perpendicular to \(x_{\infty} \) and \(y_{\infty} \) axes. Under the simplified assumption introduced in Section 2.1, the three axes are identical with those of the local coordinate system. An approaching trajectory is specified as a point (target point) on \(x_{\infty}z_{\infty} \) plane of the ballistic plane coordinate system (B-plane.) The target point is the intersection of B-plane and the asymptote of the approaching hyperbola.

Under this simple assumption, the approaching condition to attain MSO after the swing-by (MSO condition) forms circles with its center at the origin. In Fig. 7, they are drawn in thin lines, and are labeled with MSO’s orbit periods.

On the other hand, the main task of LOI is to inject the spacecraft into the mission orbit. In the following discussions,
as a typical case, it is assumed that the mission requirement assigns r_e and i. The approaching condition to attain the mission requirement can be also discussed on B-plane. Assuming that target r_e is 1838 km and target i is 90deg. (in the selenographic coordinate system), the approaching condition to attain target r_e and i forms a thick circle and a thick line, respectively, in Fig. 7. The intersections of the thick circle and the thick line are the target points to attain the mission requirement. Apparently, they are not on the circles of MSO condition, that is, the mission requirement and MSO condition are not satisfied simultaneously (in other words, Robust LOI condition is not satisfied.)

![Fig. 7. The mission requirement and MSO condition (in the simplified model).](image)

It is true that the symmetric shape of MSO condition shown in Fig. 7 is the result of the adoption of the simplified assumption. However, the situation does not change drastically even in the practical condition. Fig. 8 is drawn based on the approaching condition of the sequence shown in Fig. 1. The relation between v_m and v_m (or between v_m and γ_y axis) is essential, and in this case, v_m is (227.3 m/s, -1038.7 m/s, 6.0 m/s) on the ballistic plane coordinate system (note that, in the simplified model, v_m is exactly in $-y$ direction.) The circles of MSO condition slightly warp and shift; however, the relation between the mission requirement and MSO condition does not change very much.

These are general characteristics as far as adopting a near-optimal lunar transfer. In a near-optimal lunar transfer, the lunar transfer orbit is a highly elliptical orbit whose apogee radius is approximately R_m. The magnitude of the spacecraft’s velocity around the apogee, which is expressed as γ_m in Fig. 5, is much smaller than v_m. Therefore, v_m is almost in the opposite direction of γ_m. That is, the spacecraft always approach from the front side of the moon. In summary, MSO condition on B-plane changes if the approaching direction changes. However, as far as a near-optimal lunar transfer is adopted, the approaching direction does not change very much, and consequently the relation between the mission requirement and MSO condition does not change very much.

![Fig. 8. The mission requirement and MSO condition (in a practical condition).](image)

It is a possible option not to inject the spacecraft directly into the mission orbit. That is to say, the spacecraft is firstly injected into an intermediate orbit that satisfies MSO condition (but does not satisfy the mission requirement), and

![Fig. 9. The sequence flow of an indirect injection.](image)

![Fig. 10. An example of an intermediate target.](image)
then transfers to the mission orbit. The sequence flow of this option is shown in Fig. 9.

Fig. 10 shows an example of a possible intermediate target in the condition of Fig. 9. The intermediate target satisfies MSO condition. Target r_p is 5360km and target i is 90deg (in the selenographic coordinate system). This option is feasible; however, an injection at the large r_p results in an increase of LOI Δv. Assuming that the mission orbit is the circular orbit whose r is 1838km and i is 90deg, (in the selenographic coordinate system), total Δv required for this indirect injection is approximately 270m/s larger than that required for the direct injection.

3. Robust LOI at Second Encounter

3.1. The basic concept

As is discussed in Section 2, MSO condition on B-plane changes if the approaching direction changes. To change the direction of the relative velocity of a spacecraft against the moon, the efficient way is to use a swing-by. Of course, after the direction of the relative velocity is changed by the swing-by, the spacecraft must re-encounter the moon to perform the actual LOI. That is, the spacecraft must be injected into MSO after the first swing-by.

To summarize the concept, at the first encounter with the moon, the spacecraft is “planned” to fly by the moon. By the swing-by, the spacecraft is injected into MSO; at the same time, the approaching direction at the second encounter is set so that Robust LOI condition is satisfied. At the second encounter, if LOI is performed normally, the spacecraft is injected into the mission orbit. And even if LOI is not performed normally, the spacecraft is injected into MSO after the fly-by, and it will re-encounter the moon and will be able to retry LOI. The sequence flow of the concept is shown in Fig. 11.

Firstly discussed is the orbit plane of the approaching hyperbola which satisfies MSO condition and the mission requirement for r_p (Fig. 12.) α_{sync} is determined from MSO condition. Additionally, the mission requirement for r_p, γ, determines θ_p. Then, γ is obtained from α_{sync} and θ_p using the spherical geometry,

$$\cos \gamma = \frac{\cos \alpha_{sync}}{\cos(\theta_p/2)}$$ \hspace{1cm} (2)

There are two possible n_m's for a given orbit plane. The angles between v_m and the two n_m's are $\gamma + \pi/2$ and $\gamma - \pi/2$ respectively. On the other hand, n_p is also required to satisfy the mission requirement as to i. That is, the angle between n_p and z axis are required to be i. In summary, n_p is determined from the following two conditions.

(a) n_m is inclined with v_m in the angle of $\gamma + \pi/2$ or $\gamma - \pi/2$.
(b) n_m is inclined with z axis in the angle of i.

From these conditions, the four possible n_m's are obtained as shown in Fig. 13.

3.2. The conditions for the second encounter

Investigated in this section is the approaching direction at the second encounter to attain Robust LOI condition.

Here we use the simplified model introduced in Section 2.1. Additionally, the periods of MSO before and after the second encounter are assumed to be the same, and v_{in} at the second encounter and v_{out} of the first encounter are assumed to be the same. The latter assumption means that the orbit of the moon and MSO are both non-perturbed elliptical orbits.

Once n_m is obtained, v_{in} (or v_{out}) is determined from the following two conditions.

(a) v_{in} (or v_{out}) is inclined with v_m in the angle of α_{sync}.
(b) v_{in} (or v_{out}) is perpendicular to n_m.

v_{in} and v_{out} are set so that $v_{in} \times v_{out}$ is in the direction of n_m.

(5)
Obtained by the procedure above is v_{viss} at the second encounter which satisfies Robust LOI condition. From the assumption of the simplified model, v_{viss} at the second encounter is the same as v_{viss} of the first encounter. The approaching condition at the first encounter is determined to attain this v_{viss} after the swing-by.

Fig. 14 shows an example of the targeting at the first encounter. The approaching condition at the first encounter is the same as that of Fig. 8. The periods of MSO before and after the second encounter are assumed to be P_m. No perturbation is considered for the orbit of the moon or MSO. Four targeting points are placed corresponding to the four possible solutions shown in Fig. 13. Of course, they are on the circle of $(1 \times P_m)$ MSO condition.

Fig. 15 shows B-plane at the second encounter, in the case of adopting Target #4 in Fig. 14. MSO condition on B-plane drastically changes due to the change of the approaching direction. Now, the mission requirement and MSO condition are satisfied simultaneously (labeled “Target” in the figure,) that is, Robust LOI.

3.3. An example sequence

Using the result of the previous section (Target #4 in Fig. 14) as an initial estimate, a consistent sequence is constructed under the multi-body model. The perilune passage condition at the second and the third encounter are adjusted by several midcourse correction maneuvers. Note that the maneuver Δv is not completely optimized (minimized), where a space for the reduction still remains.

Fig. 16 shows the trajectory of the sequence in the earth-centered inertial coordinate system. As explained in Section 1, the three axes of this coordinate system are defined based on the moon orbit. The three axes are fixed at the beginning of the sequence, and they are not updated during

Fig. 14. An example of the targeting at the first encounter.

Fig. 15. The mission requirement and MSO condition (at the second encounter).

Fig. 16. An example sequence of Robust LOI.
the sequence (in practice, the moon orbit is perturbed during the sequence, and it can be observed in Fig. 16 (a).) Fig. 16 (a) shows the projection of the trajectory on XY plane, that is the orbit plane of the moon, and Fig. 16 (b) shows the projection of the trajectory on XZ plane.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure16a.png}
\caption{The sequence of Robust LOI (close up of the second encounter).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure16b.png}
\caption{The sequence of Robust LOI (close up of the third encounter).}
\end{figure}

Fig. 17. The sequence of Robust LOI (close up of the second encounter).

Firstly, a spacecraft transfers to the moon in almost the same trajectory as that of Fig. 1. By the swing-by at the first encounter with the moon, the spacecraft is injected into MSO. MSO is carefully chosen to satisfy Robust LOI condition at the second encounter with the moon. About one month later, with 9m/s of the midcourse maneuver, the spacecraft re-encounters the moon. The close up of the trajectory around the second encounter is shown in Fig. 17. It is the trajectory projected on YZ plane. At the perilune passage, normally, LOI is performed and the spacecraft is injected into the mission orbit, whose r_p is 1838km and i is 90deg. (in the selenographic coordinate system.) In the case that LOI is not performed for some reason, the spacecraft will just fly by the moon at the second encounter. However, even in this case, the spacecraft will be injected into MSO again, and about one month later, with 45m/s of the midcourse maneuver, the spacecraft will re-encounter the moon. The close up of the trajectory around the third encounter is shown in Fig. 18. It is the trajectory projected on YZ plane. At the perilune passage, LOI is performed and the spacecraft is injected into the mission orbit.

4. Conclusion

Discussed in this paper is a lunar approach strategy tolerant of LOI failure. The proposed strategy is to design a trajectory so as to inject a spacecraft into MSO even when LOI is not performed. It provides an opportunity for mission recovery even in the case of unexpected fly-by. The concept is named Robust LOI, and possible sequences to attain Robust LOI are introduced.

Firstly discussed is Robust LOI at the first lunar encounter. It is shown that, from general characteristics of a near-optimal lunar transfer, MSO condition is strongly constrained. Therefore, Robust LOI condition is not satisfied generally. One possible option is not to inject the spacecraft directly into the mission orbit; however, it is shown that it requires the respectively large additional Δv.

Secondly discussed is Robust LOI at the second lunar encounter. In this concept, the spacecraft is planned to fly by the moon at the first lunar encounter. By the swing-by, the spacecraft is injected into MSO; at the same time, the approaching direction at the second encounter is set so that Robust LOI condition is satisfied. A procedure to achieve Robust LOI condition at the second lunar encounter is introduced and an example of the designed trajectory is shown.

The result shows that Robust LOI at the second lunar encounter provides an option to reduce the risk of mission failure with relatively small Δv increase at the cost of one month’s delay of the moon arrival.

References