5－3 MUSE－NTSCコンバータ用γ補正ICの開発
Development of Analog Gamma Correction IC for MUSE－NTSC Converter

服部 一郎 中川原 智賢 龜本 一敬
阿部 裕俊** 武藤 隆彦** 川久保 利夫*** 土田 恭弘***

†Hattori C.Nakagawara K.Kamemoto
H.Abe Y.Muto T.Kawakubo Y.Tuchida

（株）東芝 映像メディア技術研究所
**東芝AVE（株）深谷事業所
***東芝AVE（株）半導体事業部

TOSHIBA Corp. Video & Electronics Media Engineering Lab.
*TOSHIBA Corp.
**TOSHIBA AVE Co.,Ltd. Fukaya Works.
***TOSHIBA AVE Co.,Ltd. Handoutai Operations Center.

An analog gamma correction IC for MUSE－NTSC Converter was developed, and the accuracy of color reproduction was improved.

1. はじめに
現在商品化されているMUSE－NTSCコンバータ（以下M－Nコンバータ）では、γ伝送（γがほとんど相殺的であり、C伝送γがほぼリニアであることを仮定）で、フルスペックMUSEデコードと比較して色、階調の再現性が損なわれている。これを利用すると、全てのγ補正を行う必要があるがデジタル処理ではコストアップは避けられない。

そこで今回、モニタγ補正をアナログ処理するM－Nコンバータ用γ補正ICを試作し、良好な結果を得たので報告する。

2. システム構成
Fig.1に本ICによるM－Nコンバータの構成を示す。

Table 1 The effect of Gamma

<table>
<thead>
<tr>
<th>System Type</th>
<th>Gamma Correction</th>
<th>Color Reproduction</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>NO NO NO</td>
<td>× × ×</td>
<td>△ △ △</td>
</tr>
<tr>
<td>Other</td>
<td>YES NO NO</td>
<td>× × ×</td>
<td>△ △ △</td>
</tr>
<tr>
<td>Combinations</td>
<td>NO NO YES</td>
<td>× △ △</td>
<td>× × ×</td>
</tr>
<tr>
<td></td>
<td>YES YES YES</td>
<td>△ △ ×</td>
<td>× × ×</td>
</tr>
<tr>
<td></td>
<td>NO YES YES</td>
<td>△ △ ×</td>
<td>× × ×</td>
</tr>
</tbody>
</table>

〇 Good △ Acceptable × Poor
3. γ補正アナログIC

Fig.2に本ICのブロック図を示す。従来ディスクリート部品で実現していたマトリクス回路と、今回新規に加わったモニタγ補正回路を1チップのアナログICで実現し、ゲイン調整、γ調整等を12Cコントロールとして、セットの大幅なコストアップを抑えている。

![Fig.2 Analog Gamma Correction IC](image)

Table 2 Specifications

<table>
<thead>
<tr>
<th>Package</th>
<th>MFP-36Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>9V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>484mW</td>
</tr>
<tr>
<td>Input Signal Level</td>
<td>0.7Vpp</td>
</tr>
<tr>
<td>Output Signal Level</td>
<td>1.4Vpp</td>
</tr>
<tr>
<td>Frequency Responce</td>
<td>>10MHz</td>
</tr>
<tr>
<td>Other Features</td>
<td>12CBUS Control, GBR Monitor Out</td>
</tr>
</tbody>
</table>

4. おわりに

本ICの開発により、大幅なコストアップ無しにM－Nコンパータの色再現性を改善できた。
今後、本ICを製品化する事でワイドアスペクトTVの高画質化に大きく貢献できるものと考える。