基礎論文

視点移動映像視聴時の注視と予告の
醉いと速度感および注視行動への影響

礫部 祐輔*1 藤田 欣也*1

Influence of Visual Target and Predictive Visual Cue on Cybersickness, Speed Sense and Gaze Behavior in Virtual Environment

Yusuke Isobe*1 and Kinya Fujita*1

Abstract — The influences of visual target and predictive visual cue on gaze behavior and cybersickness were experimentally evaluated, in order to maintain the presence and reduce the cybersickness. The severity of sickness and the sense of velocity were evaluated using simulator sickness questionnaire and method of reproduction. The eye movement was also monitored using an eye tracking camera. The results suggested that the visual target at the optical flow center has more cybersickness reduction effect than the fixed visual target, and the predictive visual cue increases the reduction effect of the target further, while the sense of velocity does not significantly differs among the visual conditions. The feasibility was suggested that presenting predictive visual cue via visual target can reduce cybersickness without impairing sense of velocity.

Keywords: cybersickness, visual cue, gaze, eye movement

1 はじめに

投影型やパネル型の映像提示装置の普及に伴い、
日常生活において大画面で動画を鑑賞する機会が増
えている。特にアミューズメント施設やVRゲームで
観る視点移動を伴う映像コンテンツにおいては、広い
視野角によっての臨場感を楽しむことができる。

臨場感を高める要素の一つに移動感があり、映像
速度や視野角の大きさ、観行感などと関係があると
されている[1]。移動感の強さの概念のうち、運動
感覚の優先順位、安定性、生起速度感など
が含まれ、その評価には、質問紙による主観評価や

反面、移動感の強化は酔いを増強する可能性が懸
念される[1]。酔いは、過去の研究において、その評
価手法、発症要因、対策方法など様々な検討が行われ
てきた。酔いの評価には、Simulator Sickness
Questionnaire[4]（以下、SSQ）のような質問紙による
主観評価が用いられることが多いが、一方では、心
電図や呼吸[5]、血圧[6]、胃電図[7]、眼球運動[8]
など生体計測による客観的評価も試みられている。

酔いの発症や程度に影響する要因としては、映像
の画角や視距離、視聴者の年齢・性別などが指摘さ
れている[9]。また、映像の動きに関しても、運動パ
ターンによる酔いの程度の比較[8]や、生体に影響を
及ぼした映像の動きペクトル特徴[10]に関する報告
などがある。これらの知見からは、画像や映像刺激
の動きを小さくすることで酔いが軽減される可能性
が期待される。しかし、画面の小型化や動きの低減
は、移動感の強さの臨場感に損なわれる可能性も考
えられる。そのため、移動感を損なわずに酔いを軽
減する映像提示手法の検討が望まれる。

そこで、視点移動映像視聴時の酔い軽減手法の一
つとして、本研究では運動の予測補助を考える。酔
いの発症メカニズムとして提唱されているものに
は、Neural Mismatch Model があり[11]、このモデルでは、
各種感覚情報の不一致[12]に加え、予測と実際の運
動の矛盾が酔いを引き起こすとされている。すなわ
ち、映像による知覚された運動から予測される将来
の運動と、実際に知覚された運動との間に矛盾が生
じた場合、酔いの発症原因となりえるという説であ
る。この仮説に従うと、予測が補助されるような予
告情報を与えることで運動予測を支援すれば、予測
と実際の運動の矛盾が低減され、酔いが軽減される
ものと期待される。

予告情報の効果への影響を調べた研究としては、
道路の提示が酔いを軽減する可能性[13]や、加速度
の発生を予告する視覚的信号の自律神経系への影
2 SSQによる酔いの評価実験

2.1 実験環境

提示映像は、森の中を1.6mの高さで前進しながら、ときおり左右にヨー回転あるいは進行方向まわりにロール回転し、前進速度が130, 195, 260, 390km/hの4段階に変化するCG映像を用いた。ロール回転時の回転角速度は7.0rad/sとし、ヨー回転時の回転角速度は、後述のOF中心が画面外に出ないように、速度に応じて0.17rad/sから0.52rad/sまで変化させた。120インチスクリーンにプロジェクタ（LP-XT10、三菱製、2500ルーメン）で映像を前投写し、被験者にはスクリーンの手前1.10mの位置に設置した椅子に座り映像を視聴させた。着座位置における画角は、水平画角97度、垂直画角80度で、CG描画におけるバー スペクティブ設定値と一致させた。また、臨場感を高めるために椅子に取り付けたスピーカからエンジ ン音をの雑音を提示した。実験風景を図1に示す。

2.2 刺激条件

先に述べたように、これまでの研究では、注視点の影響が、さらに視標点注視によるOKNの抑制の影響が混在した状態で評価されており、これらを分離して評価する必要がある。そこで、本研究では、①通常の視標点移動映像である「視標点なし」、②星型の視標点を画面中央に提示する「固定視標点」、③視標点を進行方向であるOptical Flow（以下、OF）中心に提示する「OF中心視標点」、④OF中心視標点が0.6秒先行運動する「OF中心先行視標点」の4条件を設定した。OF中心位置は、視距離をCG描画の近点と遠点の中間55mと仮定して近似的に算出し、算出位置の妥当性を視覚的に確認した後に実験を実施した。また、2.1で述べたように、OF中心が画面外に出ないように速度と回転角速度を設定した。表1に、各注視条件の特徴比較を示す。①固定視標点と②固定視標点を比較することで視標点提示によるOKN抑制の影響を、③OF中心視標点から視標点のOF中心影響の影響を、さらに、④OF中心視標点と⑤OF中心先行視標点を比較するこ

![図1: 醺いの評価実験風景](Fig.1 Experimental set-up for cybersickness evaluation)

![図2: 刺激映像と視標点](Fig.2 Visual stimulus and gaze target)
とで、固視点の先行運動による予告の影響を検討することが可能になるものと考えられる。

なお、固視点は、進行方向まわりの回転が視認できるように、被験者から見たときに星形になる場合状とし、さらに、図2に示すように、周辺映像の遮蔽を極力避けるため、進行方向周りの回転が視認できる範囲で、できるだけ小さなものとした。また、OF中心先行固視点での先行時間が、短いと予告効果が小さくなり、長いため速度感を損なう、あるいは予告と認知されなくなる可能性が懸念される。そこで、本研究では、これまでの実験結果[15]をもとに、先行時間を0.6秒に設定した。

2.3 実験方法

被験者は、書面によりインフォームドコンセントを得た健常成人男性35名、女性2名の計37名である。被験者には、固視点が提示されない映像の場合は映像の進行方向を、固視点が提示される映像の場合は固視点を、頭を動かさずに眼球だけを動かして見るように教示した。

映像提示時間は各刺激条件でそれぞれ10分とし、20分の休憩を挟みながら、被験者ごとにランダムな順序で行った。また、実験の前にSSQ[4]を用いた主観評価を実施し映像刺激による変化量を求めた。

2.4 結果

実験では、被験者1名が「固視点なし」条件で、重複の着用のために実験を中断し、別の被験者1名において、休憩時間を含む刺激効果の残留(刺激開始前SSQスコアの上昇)が認められた。そこで、これらの被験者2名を除いた35名の被験者のSSQにおける16項目の主観評価値から、スコアの算出式に従って重み付け加算をおこない、「吐き気」、「眼精疲労」、「空間錯覚」および「トータルスコア(TS)」を求めた。

被験者35名の平均スコアと標準偏差を図3に示す。吐き気およびTSは、「固視点なし」、「固定固視点」、「OF中心固視点」、「OF中心先行固視点」順に低くなり、眼精疲労と空間錯覚は、「固視点なし」順に比較して固視点提示の3条件間が低い値を示した。

各SSQスコアに対してt検定をおこなった結果、吐き気のスコアでは「固定固視点」と「OF中心固視点」の組み合わせ以外の全条件間で、危険率1%または5%有意差が認められた。固視点提示の空視点条件のスコアは、「固視点なし」と固視点提示3条件間で、それぞれ危険率1%あるいは5%有意差が認められた。TSも同様に「固視点なし」と固視点提示3条件間で危険率1%または5%有意差が認められた。

しかし、各被験者のSSQスコアは個人差が大きく、一部に吐きを発症していないと見られる被験者が多いことから、正確な吐きを発症していると考えられる被験者に限定して評価を行うため、「固視点なし」のTSの中央値(9.61)を用いて、被験者を醉いの強弱による2群に分けた。2群に分けた。醉いが強い群の被験者18名の平均スコアを図4に示す。全ての評価指標において、「固視点なし」、「固定固視点」、「OF中心固視点」、「OF中心先行固視点」の順に平均値が低くなる傾向が見られる。

醉いが強い群のSSQスコアに対してt検定を行ったところ、吐き気のスコアは、各条件の組み合わせすべてに有意差が認められた。眼精疲労・空間錯覚失調では、強いための群においても固視点提示の3条件間有意差はみられなかったが、吐き気と同様、固視点なし、「固定固視点」、「OF中心固視点」、「OF中心先行固視点」の順にSSQが低くなった。また、TSは、「固視点なし」と「OF中心固視点」の条件間で有意差が1%と強く、「固定固視点」と「OF中心先行固視点」の条件間で新たに危険率5%の有意差が認められた。以上の結果より、固視点の提示は、吐きの症状すべての軽減に効果を有し、固視点のOF中心に連動した運動や、固視点の先行に

図3 平均SSQスコア（35名）

図4 強い群のSSQスコア（18名）
3.1 実験方法
速度感を定量的に評価するため、調整法を用いた評価実験を行った。刺激映像是、鮮い評価実験と同様に森林の中を移動するCG映像であるが、速度感の評価を行うために前進速度（仮想空間内での視点移動速度）は一定とした。刺激条件は鮮いの評価実験と同じ4条件とし、映像の提示時間はそれぞれ1分とした。被験者には提示中の速度感を記憶させ、刺激映像の提示終了直後に、ランダムドット映像を提示し、森林CG映像の刺激提示映像で記憶した速度感を、マウスのホイール操作による速度調整で再現させた。なお、森林映像の場合は鮮いの評価実験と同じく、固視点が提示されない映像是進行方向を、固視点が提示される映像の場合は固視点を見るように教示した。さらに、ランダムドット映像の場合は、画面中央を注視するよう教示した。

ラランダムドット映像の初速は、「停止状態」と、「提示速度の2倍」の2種類とし、各初期条件に対して4条件の刺激映像を提示したため、計8条件を1セットとした。そして、10分間の休憩をはさみ、3セットの実験を実施した。被験者は鮮いの評価実験にも参加した成人男性9名、成人女性1名の計20名である。実験後に速度感に違いがあったか、内観報告を行わせた。

3.2 実験結果
実験は3セット行ったが、課題への習熟を考慮し、2セット目と3セット目の結果のみを用いて調整速度の平均値を求めた。被験者が調整に要した時間は、1回あたり20秒程度であった。結果を図5に示す。個人差が大きく、全体的に低く調整する者と高く調整する者が見られた。各刺激条件の調整速度の平均値に対して1検定を行ったが、有意差はみられなかった。また、内観報告においても、速度感に大差はなかったと報告された。

4 眼球運動計測実験
4.1 実験方法
刺激映像・刺激条件はこれまでの実験と同様である。被験者は健常成人男性10名で、図6のように頭部に眼球運動計測装置（EYELINK II, SR Research製）を装着し、61インチ型プラズマディスプレイの前方0.8mに設置した固定台に頭部を固定した状態で刺激映像を視聴した。刺激提示時間は90秒とし、鮮いの評価実験と同様の教示を与えたときの眼球運動を計測した。着座位置における画角は、水平画角57度、垂直画角53度である。

4.2 実験結果
実験を行った被験者10名の眼球運動に同様の傾向がみられたため、左右を連続してカップする視点運動映像を提示したときの眼球運動波形の典型例を図7(a~d)に示す。図7(a)の「固定視点なし」では、視運動性眼振(OKN)の発生が確認され、さらに注視位置がOF中心、すなわち進行方向と大きくずれていく様子が確認される。図7(b)の「固定視点」では、注視点を提示した画面中央への注視に加えて、先行研究[18]によって報告されているようにOKNの抑制が確認される。図7(c)の「OF中心前視点」と図7(d)の「OF中心先行前視点」では、OKNの抑制に加えて、OF中心と注視位置のずれが軽減されていった。さらに、「OF中心先行前視点」は、固視点の先行による、OF中心に対する注視位置の先行が観察される。図8に、被験者10名のOF中心と注視位置のずれの平均値を示す。
図7 固視点と注視位置の関係
Fig.7 Relation between gaze conditions and gaze point ((a):No gaze target. (b): Fixated gaze target. (c): Gaze target at center of optical flow. (d): Gaze target that precedes center of optical flow)

図8 OF中心と注視位置のずれ（10名）　
Fig.8 Position error between the center of optical flow and gaze point（10 subjects）

5 考察
本研究の3つの実験から得られた結果の関係を整理したものを、表2に示す。「固視点なし」に対して「固定視点」では図7のように視点の注視によってOKNが抑制され、同時に吐き気が軽減される結果となった。この結果は、先行研究[18]の報告と一致する。

さらに、「OF中心視点」では、図8に見られるようにOF中心と注視位置のずれが「固視点なし」よりも減少し、吐き気が有意に軽減された。固視点を提示しない条件では、注視点はOF中心に対してずれているため、網膜上の中視覚領域におけるOFは放射成分に加えて並進成分を有する。これに対して、OF中心への視覚提示によって適切に注視点を誘導すれば、中心視覚領域のOFは放射成分のみとなる。すなわち、このOF並進成分の軽減によって、吐き気が軽減された可能性が考えられる。

「OF中心先行固定視点」は、図7のように「OF
中心視点」と同様の眼動運動波形を示しており、図8のように、OF中心とのずれも同程度であった。他方、吐き気のスコアは「OF中心先行視点」で有意に軽減された。これは、先行研究から期待したように、固視点の先行によって自己運動の予測が補助され、その結果として予測と実際の動揺の矛盾が低減され、吐き気が軽減されたものと考えられる。

一方で、中心視領域におけるOF並進成分の強度の相違は、速度感に与える可能性も予想されたが、図5に示す調整法を用いた速度感の評価実験では、4条件間に大差はなかった。これは、速度感の発生には周辺視が寄与するところが大きい[1]と考えられる。

以上のよう、固視点注視によるOKN抑制やOF中心認知の支援、および固視点先行による予告は、それぞれが吐き気の軽減効果を有し、速度感にはほとんど影響を与えないという結果が得られた。これは、固視点を先行運動させることで速度感を崩わずに吐き気を軽減する可能性を示唆するものと言える。また、本研究では注視と予告の影響を調査する目的から、単純な形状の固視点を用いたが、機械等を目的とした映像コンテンツにおいては、コンテンツの無関係な固視点の提示は不自然であるため、先導あるいは逃がれるキャラクタ提示にするなど、コンテンツを損なわない設定をした上で、視聴者の視点を誘導するなどの方法が考えられる。

6 まとめ

注視位置の制御をおくない、注視と予告の離いと速度感および注視行動への影響を調べた。その結果、固視点の提示によってOKNが抑制され、離いが低減される事実が認められた。また、OF中心に固視点を提示し注視させることで、OF中心と注視位置のずれが減少し、吐き気が軽減される事、さらに、固視点を先行運動させることで予測が補助され、より吐き気が軽減される事実が実験的に示された。他方、速度感は固視点や予告の有無によって大きな差が見られなかった。視点移動を伴う映像コンテンツにおいて、コンテンツを損なわない範囲で、OF中心に先行して動揺する何らかの物体を提示することで、速度感を損なわず吐き気を軽減できるものと期待される。

謝辞

本研究の一部は、文部科学省特別教育研究費共生情報工学研究推進経費によるものである。ここに記して感謝する。また、第1著者が本研究をはじめるきっかけを与えてくれた、大阪工業大学大西賀美俊子教授に、この場を借りて感謝する。
磯部・藤田：視点移動映像視聴時の注視と予告の酔いと速度感および注視行動への影響

(2007年12月14日受付)

[著者紹介]

磯部 祐輔 （学生会員）
2006年大阪工業大学情報科学部情報メディア学科卒業。2008年東京農工大学大学院博士前期課程情報工学専攻修了。在学中に、注視と予告による酔いや速度感および眼球運動への影響解析の研究に従事。

藤田 欣也 （正会員）
1988年慶應義塾大学大学院理工学研究科修了。相模工業大学、東北大学医学部、岩手大学を経て、現在東京農工大学大学院共生科学技術研究院先端情報科学部門教授。遠隔共有仮想空間および力触覚や歩行感覚の提示、ならびにVR空間を利用した教育や訓練に関する研究に従事（工学博士）。