複合現実型視覚刺激と聴覚刺激が触印象に与える影響
－産業応用システムでの利用を想定した評価－

鍵本 麻美*1 木村 朝子*1 柴田 史久*1 田村 秀行*1

Psychophysical Influence on Tactual Impression by Mixed-Reality Visual and Audio Stimulation
－Evaluation of Illusions That May Occur in Industrial Application Use－

Mami Kagimoto*1, Asako Kimura*1, Fumihisa Shibata*1, and Hideyuki Tamura*1

Abstract – In mixed reality (MR) environment, a touchable object can be changed its appearance by superimposing a computer generated image (MR visual stimulation) onto it. In this paper, we focus on the “roughness” as one tactual impression, and study the effects of MR visual and audio stimulation on tactual impression with some systematic experiments. We has investigated that MR visual stimulation causes the different tactual impression from a real object. Meanwhile, it has been indicated that touch impression could be also affected by audio stimulation generated stroking the object. Therefore, it would appear that touch impression is more affected by MR visual and audio stimulation. As the result of experiments, MR visual and audio stimulation much more affect it than MR visual stimulation.

Keywords: Mixed Reality, Tactual Impression, Psychophysical Influence, Visual and Audio stimulation.

1. はじめに

現実世界と仮想世界を実時間で融合する複合現実感（Mixed Reality; MR）技術は、人工現実感（Virtual Reality; VR）研究の中で最も活発な分野の1つとなっているが、その研究や応用の大半は視覚的なMRの実現に向けられてきた。我々は、視覚的MRと聴覚的MRを同時に達成できる方式[1]を提案・実現するとともに、そこに触覚的な刺激も積極的に付加する感覚融合型のMRシステムを研究開発してきた[2]。ここで、視覚と聴覚は現実と仮想の融合という点で対称形をなすが、触覚に関しては非対称で補助的な役割に留まっている。これは、視覚と聴覚には汎用的なディスプレイが存在するが、触覚ディスプレイは未だ限定された表現能力をもつものしか実現されていないためである。

一方で、視・聴・触の三感覚の2つ以上を併用した場合は、相補的な働きをしたり、互いに影響を及ぼし合うことが知られている。であれば、視覚と聴覚が触覚により与える影響を分析し、限られた触覚ディスプレイの能力を最大限に有効利用することが考えられる。こうした観点から、我々はMR型の視覚・聴覚刺激が触覚に及ぼす影響を系統的に実験し、客観的な知見を得ることを目指している。

その第1歩として、実体に同形状のテクスチャ画像を重疊描画する「MR型触覚刺激」が触覚に与える影響を実験・分析した[3]。この実験の結果、

- 同じ触覚の視覚でも、視覚的に粗さを変えると触覚的に粗さがあるように感じることがある。
- 同じ触覚の視覚でも、視覚的に粗さを変えると触覚的に粗さがないことがある。
- 実体の触覚は異なる材質の画像をMR刺激した場合、
- 視覚的にもその素材感を与えることができるという知見を得た。

MR型視覚刺激が触覚に影響を及ぼすというある種の「錯覚」は、事前に予想し期待した現象である。実験の結果、あらゆる場合に起こり得る現象ではないが、適切な視覚刺激と触覚刺激の組合せを選ぶことによって、工業的用途（例えば、[4][5]など）MRシステムにも十分応用し得るというものであった。即ち、限られた種類の実体に異なる材質
2.2 本研究の意義と実験対象

本研究は、MR 型の視覚刺激に聴覚刺激を付加して提示した場合に、より触覚刺激への影響が強まるという仮説を立て、それがどのような場合に、どの程度の影響を与えるかを検証しようとするものである。これまでの関連研究からもこの仮説はかなり有力と言えるが、MR 型視覚刺激に聴覚刺激を付加するという条件下での実験例は存在しないため、具体的な MR システムでの系統的な実験を実施して評価することにした。

このような観察の観察対象の観察は、広汎的なオブジェクトに対する一般的な知見を得ることが好ましいが、あまり条件を広げ過ぎると多様な因子を含み、客観的な事実を引き出すことは難しくなる。そこで、本研究は、あらゆる用途での利用を想定するのではなく、文献[3]と同様な工業製品の設計製造分野での応用を前提とし、その範囲内での確認的な知見を得ることと対象を絞っている。即ち、実際に利用し得る MR システムを用いて視覚・聴覚刺激を提示することと、比較的簡単かつ定量的に触覚刺激の修飾が可能であることを実証しようというものである。

3. 提示すべき接触音の生成と評価

3.1 提示する刺激

従来の研究実験[3]との整合性を保つため、視覚・聴覚・触覚刺激のそれぞれで、粗さが段階的に異なる 4 種類の刺激を用いる（図 1）。以下、触覚刺激、MR 視覚刺激、聴覚刺激をそれぞれ粗さのものから順に Rough 1～Rough 4, CG 1～CG 4, Sound 1～Sound 4 と呼ぶ。

触覚対象である実物体は、ABS 樹脂を用いて成形したラピッド・プロトタイピング（Rapid Prototyping;
3.2 聴覚刺激の作成と評価
3.2.1 実際の接触音の分析

図2に示すように、対象物体の表面は壁み部分と平面部分から構成されている。この物体表面を、掌や爪で触る部分で音が出る程度の強さで触ると、壁み部分は接触媒体が壁みの縁に衝突する音（衝突音）が発生する（図3 (a)）。表面の粗い物体ほど壁み部分の深さと直径が大きく、平面部分の面積が小さいため、表面が粗い物体の接触音中には、衝突音が多く、接触音が少ないと考えられる。表面が滑らかな物体の場合は、その逆である。このような仮定に基づいて、衝突音と摩擦音の合成比率を工夫することで、粗さの違いを強調した接触音を生成することが可能であると考える。

一方、同じRPオブジェクトでも、触知媒体の硬さ・材質などによって含まれる衝突音と摩擦音のエネルギー比は異なり、例えば、爪のような硬く滑らかな触知媒体で撫でた場合、衝突音ははっきりと聞こえるが摩擦音はほとんど聞こえない。一方、指の腹のような軟らかな触知媒体で撫でると衝突音はほとんど吸収され、摩擦音のみ聞こえる。

実際、爪と掌で4種類の物体を撫でたときの接触音を録音し、周波数解析を行った。撫でる速さは1往復（約30 cm）1秒、録音時のサンプリング周波数48 kHzである。録音時の環境を図4に示す。掌の接触音は、RPオブジェクトに接触させたマイクロホンで録音した。また、爪の接触音は、適切な音量を保つようにRPオブジェクトから離れた位置のマイクロホンで録音した。これらの接触音（半往復分）のスペクトログラムを図5、図6に示す。爪で撫でた接触音には、周期的にスペクトルが広がっている部分（図5筋状部分）があり、表面が粗いほどそれらのエネルギーが大きくなるという特徴が見られた。一方、掌で撫でた接触音からは、粗さを特徴付ける違いは見られなかった（図6）。
3.2.2 強調接触音の生成

以上の結果から、衝突音を多く含む爪との接触音と摩擦音を多く含む掌との接触音を利用して、以下の方法で強調接触音を生成することにした。

(i) 全ての粗さの爪と掌の接触音を Rough 1 の RP オブジェクトとの接触音の音量に正規化する。

(ii) 爪と掌による接触音は、それぞれ前項で録音したものから切り出した、同じ周期で往復している 1 往復（1 秒間）を使用する。

(iii) 衝突音が多い爪の接触音と摩擦音が多い掌の接触音を表 1 の割合で合成する。ただし、ある粗さの聴覚刺激を作成するときは、対応する実体の接触音を利用する。

(iv) Sound 1～4 で合成後の音量を、それぞれ原音で合成した場合の音量に正規化する。

(v) より粗い聴覚刺激の音量が大きくなるよう、表 1 の比率に従って (iv) を増幅する。

3.2.3 評価実験

3.2.2 の手順で作成した合成比率と増幅率が異なる 4 種の聴覚刺激 A～D（表 1 参照）を聞くことで、物体表面の粗さを区別可能かどうか、図 2 の RP オブジェクトの接触音として違和感がないかを確認する評価実験を行った。聴覚刺激は、1 往復 1 秒の速度で墈でた接触音 4 往復分である。実験内容は以下の通りで、被験者は正常な聴力を持つ 21～24 歳の男女 16 名である。

【実験 1】

(i) 聴覚刺激を無作為に 1 種類ずつ提示する。1 種類
提示した後は、1秒間の無音時間を設ける。被験者は必要に応じてメモを取りることができる。これ
を被験者が回答するまで要望に応じて繰返す。
(2) 全ての音を開かせたのち、各聴覚刺激の箱の
順位を回答させる
【実験 2】
(1) 4 種類の RP オプジェクトを被験者の前に箱さ
の順に並べ、それぞれに対応する聴覚刺激（実験
1 で箱さ順位を正答した聴覚刺激のみ）を順に提
示する。提示方法は実験 1 と同様である
(2) 被験者に「4 種類の音が各 RP オプジェクトの外
観から選択される接触音であったか」回答させる
実験 1 の結果、聴覚刺激 D は 13 名、B は 9 名、
C は 7 名、A は 6 名が箱さの順位を正答し、全ての
被験者が B、D どちらかの聴覚刺激の箱さの順位を正答し
た。この結果から、爪と掌の接触音の合成割合、合
成後の増幅率を調整することで聴覚刺激の箱さの違
いを強調できることがわかる。また、実験 2 で 16
名中 13 名が B または D の聴覚刺激を「各 RP オブ
ジェクトの外観から選択される接触音である」と回
答したことから、本研究では 2.1 の 3 つの条件を満
足する強調接触音として聴覚刺激 B、D を採用する。

4. 実験 1：同一の表面箱さを用いた実験

4.1 実験目的
文献[3]実験 1.1 では、以下の場合で実験を行うこ
とで MR 型視覚刺激が聴覚刺激に影響を及ぼすことを
確認した。
・同じ表面箱さを持った 2 つの RP オプジェクトを並
置する
・それぞれ異なる表面箱さのテクスチャ画像を重
畳描画する
・一対比較法により、被験者は左右どちらの RP オ
プジェクトをより箱さを感じるか回答する
実験 1 では、上記実験に聴覚刺激（強調接触音提
示）を付加することで、MR 型視覚刺激のみの場合
よりも、聴覚刺激への影響が強まるかどうかを実験・
検討する。具体的には、以下の 2 つの実験を順行
い、結果を比較する。
(a) 触知する物体とその箱さに対する聴覚刺激を
提示し、視覚刺激のみ異なる箱さのものを重畳描
画する（文献[3]実験 1.1 は自然な接触音を聴かせ
ていた）
(b) 触知する物体とは異なる箱さの視覚刺激と、そ
の視覚刺激と同じ箱さの聴覚刺激を提示する

4.2 実験環境
実験環境を図 8 に示す。本実験で使用する MR シ
ステムの構成は文献[3]と同様で、MR 空間の観察に
はヘッドマウントディスプレイ（Head Mounted
Display; HMD）、被験者の頭部位置姿勢の計測には
Ascension 社の 3D レーザトラック laserBIRD を用い
る。聴覚刺激はサンワサプライ社のインイヤー式イ
ヤホン MM-HP106W を用いて提示し、実際に物を
撫でた時に生じる実際の接触音を完全に遮音するた
め、上からイヤーマフを装着する。

4.3 実験内容
被験者は、3.2.3 の実験 2 で作成した強調接触音物
体の表面外観から選択できると回答した 21〜24 歳
の男女 13 名である。聴覚刺激には、各被験者、2.3.3
(2) の実験で箱さを連想できると回答した強調接触
音 A または D を提示する。聴覚刺激の提示時間は、
1 往復 1 秒の速さで撫でた接触音 6 往復分である。
実験準備・手順は (a) (b) で同じである。
【実験準備】
(1) 手の動きを聴覚刺激に同期させて対象物体を撫
でる練習をさせる
(2) 眼前に 4 種類の MR 型視覚刺激を並べて提示し、
対応する箱さの聴覚刺激を順に提示することに
より、視覚刺激に対する聴覚刺激の箱さを学習
させる
【実験手順】
(3) ランダムに選出した表面箱さが同じ 2 枚の物体
(RP オプジェクト) を左右に配置する
(4) 左右で異なる箱さの視覚刺激をランダムに重畳
描画する
(5) 左側の聴覚刺激から順に提示し、聴覚刺激が鳴
り始めから被験者に物体を撫でさせ、どちらの
物体の触感をより箱さを感じるか回答させる（「区
別できない」という回答を許す）。要望に応じて
聴覚刺激の提示を繰り返す
(6) 物体をランダムに入れ替え、全ての組合せが提
示されるまで (3)〜(6) を 1 度ずつ繰り返す
試行回数は、C2 (a) では視覚刺激、(b) では視覚・
聴覚刺激の組合せ) × 4 (実物箱さの数) = 24 回である。
4.4 結果と考察
実験結果の全体的な傾向を図9に示す。文献[3]の結果と同様(a)のMR型視覚刺激のみ変更した場合、視覚刺激が粗い方向を触れる方と粗い方向を触れない方は、視覚刺激が触える方と視覚刺激が触れない方の傾向にあり、視覚刺激が触れる方では、視覚刺激が触れない方よりも有意差がみられた。もちろん、視覚刺激が触れる方では、視覚刺激が触れない方よりも有意差がみられた。

一方、(b)の視覚刺激と聴覚刺激も変更した場合は、全ての物体において、粗さに差があると感じた回答の割合が、視覚刺激のみを変更した場合の結果に比べて、12〜15%増加した。表面粗さが粗い方が視覚刺激の影響をより受けやすい傾向が変わらないもの、Rough 3、Rough 4に関しても、粗さの差を感じた人数は増加している。被験者が初めて(b)のMR型視覚刺激と聴覚刺激の両方向を変更した場合に左側で異なる触覚刺激を受けたという意味を多く得られたことから、視覚刺激と聴覚刺激の両方向でフィクスが加えられたところで、さらに触覚刺激の影響（錯覚）が強まることが確認できたといえる。

なお、上記の結果は全体的傾向の概略を示したに過ぎないが、本実験が統計学的な観点からの有意差があるかどうかに関して、個々に経験的な実験を行った。まず、図9において、「視覚刺激が粗い方が粗く感じる人数」に対して、(2)視覚刺激のみ/聴覚刺激を呈示条件×4（触覚刺激の初きさ条件）の分散分析を行ったところ、視覚のみ/聴覚刺激を呈示条件(p<0.01)、触覚刺激の初きさ条件(p<0.05)の主効果が有意であった。触覚刺激の初きさ条件の主効果においてさらに多重比較を行った結果、Rough 1〜3間とRough 1〜4間に有意差がみられた(p<0.05)。これらの検定結果は、前段落で述べた結果とも一致する。

図10はRough 3に対する一対比較法の結果を図示したものである。これを分散分析した結果、刺激条件が有意であったため、刺激間の距離について差の検定を行ったところ4個の有意差がみられた。この図の(a)と(b)を比較すると、(b)ではCG 1-2間、CG 2-3間、CG 3-4間に有意差が現われていることが読み取れる。表2は、聴覚刺激を与えた場合、「右のRPオプジェクトが粗い」と回答した人数の増減を整理したものである。同表中には、2組の標本に「t検定」を行った結果が示されている。回答数の増減が多かった箇所は、この検定でも「有意差」が出ていることが確認できる。その程度は、図9で予想したものと一致していた。

他のRPオプジェクトに関しても同様な分析を行ったが、同じような傾向が確認できた。紙幅が限られているので、冗長な記述は避け、本論文では上記Rough 3に関する分析結果のみに留める。

5. 実験2：異なる表面粗さを用いた実験

5.1 実験目的
実験1では同じ粗さの2つの物体が、「聴覚刺激の付加により、表面粗さの触覚刺激の影響（錯覚）が強まる」という結果が得られた。しかし、実験1では、触覚刺激が粗い方向を触れる方と、触覚刺激が粗い方向を触れない方の2つの条件を比較した。実験2では、触覚刺激が粗い方向を触れる方と、触覚刺激が粗い方向を触れない方の2つの条件を比較した。
5.2 実験内容
実験 2 の (a) と (b) と同様の実験を順に、併置する触知物体の組みを替えて行う。実験環境、被験者、MR型視覚・聴覚刺激も実験 1 と同じであるが、触知する物体は、2 種類（Rough 2 および Rough 3）に限定する。これは、全ての組合せについて実験を行うと、試行回数が膨大になり、被験者が疲労を覚え、正しい実験が続ければならないためである。

試行回数は、4 × 4 の（a）では視覚刺激、（b）では視覚・聴覚刺激の組合せ・16 回である。

表 3 実験 2（a）結果
Rough 3 が粗いと判断された回答数
Table 3 Result of Experiment 2（a）
Number of Subjects Who Perceive Rough 3 as Rougher

<table>
<thead>
<tr>
<th>触覚刺激</th>
<th>視覚刺激</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough 2</td>
<td>Sound 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rough 2</td>
<td>Sound 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rough 2</td>
<td>Sound 4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

単位：人

表 6 実験 2（b）結果
Rough 3 が粗いと判断された回答数
Table 6 Result of Experiment 2（b）
Number of Subjects Who Perceive Rough 3 as Rougher

<table>
<thead>
<tr>
<th>触覚刺激</th>
<th>視覚刺激</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough 2</td>
<td>Sound 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rough 2</td>
<td>Sound 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rough 2</td>
<td>Sound 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rough 2</td>
<td>Sound 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

単位：人

5.3 結果と考察
(a) の MR 型視覚刺激のみ異なった粗さを提示した場合、滑らかな方の実物体（Rough 3）に対して、「より粗い」という逆説の回答を得たのは全回答中5.3％であり（表 3）、「区別できない」という回答は10.1％であった（表 4）。

一方、(b) の視覚・聴覚刺激両方でフェイクを与えた場合、視覚刺激のみの場合にして、滑らかな物体を「より粗い」とする逆説の回答は全体で2.4％（表 5）、「区別できない」とする回答は6.7％増加し（表 6）。しかし、左右で粗さが異なる物体に、左右を同じ視覚・聴覚刺激を提示した場合（表 1 中太枠）に着目すると、「区別できない」という回答は平均46.2％で、38.5％増加した。

本実験結果に関しても、実験 1 の場合と同様な統計的検定を行った。紙幅の制限から、Rough 2、Rough 3 の粗さが正しく判断された結果は省略するが、結果の結果、最も大きいか有意差が出たのは、左右両方の RP オプジェクトに CG 1、Sound 1 を提示した場合と CG 4、Sound 4 を提示した場合のプラス 7 名であった（表 6）。

以下の結果から、MR 型視覚刺激によるフェイク
6. むすび

本研究では、触知する実物体とは異なる粗さのMR型視覚刺激に聴覚刺激を加えて提示した場合に、より触知の影響を及ぼすかどうかについての研究実験結果を述べた。実験対象物体を手でたどるときに発生する実際の接触音では、実験するに足る聴覚刺激が得られなかったので、視覚から連想される聴覚刺激（強調接触音）を合成し、目的とする統制的かつ客観的な実験を行って、できるだけ実験をした。実験の結果、聴覚刺激を加えた場合、感覚の变化は観察された場合に限定される実験であっても、こうした客観的な事実があるということは、様々な実用的MRシステムの開発には有用である。例えば、強調した刺激を与え、印象的、効果的な演出を加えることで、体験者により魅力的なMR型情報提示が可能となる。

謝辞


参考文献


著者紹介

鍵本　麻美　（学生会員）
2008年立命館大学理工学部情報学科卒。現在、同大学院理工学研究科博士前期課程在学中。複合現実型視覚刺激と聴覚刺激が触覚刺激に及ぼす影響－産業応用システムでの利用を想定した評価－

木村　朝子　（正会員）
1996年大阪大学基礎工学部卒。1998年同大学院基礎工学研究科博士前期課程修了。同大学助手、立命館大学理工学部助教授、科学技術振興機構さきがけ研究員等を経て、2009年4月より立命館大学情報理工学部メディア情報学科准教授。博士（工学）。実世界指向インタフェース、複合現実感、ハブテックインタフェースの研究に従事。2001年より2002年までMayo ClinicにてSpecial Project Associate、電子情報通信学会、情報処理学会、ヒューマンインタフェース学会、ACM、IEEE各会員。本学会学術奨励賞、情報処理学会山下記念研究賞等受賞。

柴田　史久　（正会員）
1996年大阪大学大学院基礎工学研究科博士前期課程修了。1999年同研究科博士後期課程修了。大阪大学産業科学研究助手を経て、2003年4月より立命館大学理工学部助教授。現在、同情報理工学部情報コミュニケーション学科准教授。博士（工学）。モバイルコンピューティング、複合現実感等の研究に従事。現在、University of Central Florida, Media Convergence Lab, 客員研究員、IEEE、電子情報通信学会、日本ロボット学会、情報処理学会等の会員。2005年本学会学術奨励賞受賞。

田村　秀行　（正会員）
1970年京都大学工学部電気工学科卒。工業技術院電子技術総合研究所、キヤノン（株）等を経て、2003年4月より立命館大学理工学部教授。現在、同情報理工学部メディア情報学科教授。工学博士。1997年より2001年まで、MRシステム研究所にて「複合現実感研究プロジェクト」を率いた。本学会元理事。現在、評議員、複合現実感研究委員会顧問。編著書「Mixed Reality」(Ohmsha & Springer)「コンピュータ画像処理」(オーム社)など、電子情報通信学会フェロー、IEEE、ACM、情報処理学会、人工知能学会、映像情報メディア学会等の会員。情報処理学会論文賞、人工知能学会功労賞等を受賞。