基礎論文

3D 映画における奥行き感の演出が恐怖感情に及ぼす影響

金相賢*1 盛川浩志*1,2 河合隆史*1

The Emotional Effects on Direction of Depth Perception in the Stereoscopic Films

Sanghyun Kim*1, Hiroyuki Morikawa*1,2 and Takashi Kawai*1

Abstract --- The effects of moods and emotions on correlations with direction methods for stereoscopic 3D images are the focus of this study. Specifically, we investigated the sense of fear in different 2D and 3D conditions as well as the different directing methods involved. Directional techniques were sorted into three categories according to the dynamic characteristics of the focus object in 3D space along the Z-Axis, XY-Axis, and Fixed-Axis directions. The emotional value of fear was characterized in terms of two values, valence and arousal, which were measured using the Self-Assessment Manikin (SAM) and skin potential reaction (SPR). The results indicated considerable differences in terms of viewing condition, directing method, and gender. SAM measurements indicated low valence and high arousal scores in 3D viewing condition. Furthermore, the effects of directing methods depended on the center and range of 3D space. Depth representation was a more important factor for female than male subjects. The SPR frequency increased during viewing Z-Axis direction in 3D condition.

Keywords: stereoscopic images, 3D, emotion, valance, arousal, SAM, skin potential reaction

1 はじめに

近年、両眼立体（以下 3D）視に対応するプロジェクター・再生装置・スクリーンを導入する劇場が増加することで、3D 映画制作や視聴環境が整備されつつある。3D 映画の制作には、実空間や仮想空間にステレオカメラを用いる 3D 撮影と、2D 映像として撮影された素材を編集や画像処理によって 3D 化する 2D3D 変換に大別できる。これらの制作方法は、左右眼の離れた間隔により生じる両眼視差（左右映像の生成過程を取り入れる共通点を持つ）両眼視差を用いて 3D 映像の再生位置調整や空間演出を行う尺度として視差角が利用される。視差角は、2D 映像を観察する際の両眼視差角を左右映像の距離（すれ量）による幅狭角を差し引いて求められる。オブジェクトが画面より観察者側に飛び出している場合は交差性視差となり、視差角はマイナスとなる。逆にオブジェクトが画面より奥側に呈示される場合は非交差性視差となり、視差角はプラスとなる。1990 年前後から現在まで 3D 映像の視差角と視覚的負担に関する研究が関連分野において行われている[1]-[4]。近年では、3D コンサーシアムによるガイドラインが策定され、交差方向の視差角 1 度以内を安全性にかかわる許容範囲と提案している[5]。

3D 映画において視差をコントロールすることで 2D 映画と同様の上映時間設定で観察が可能となり、3D 映像によるユーザ体験に関する評価も考察に行われている。Häkkinenらは約 6 分間のショートムービーを 2D および 3D 映像条件で呈示し、観察者（n=20）の眼球運動を測定し比較した[6]。その結果、2D 条件では視聴後すぐに視線が人物に集中し、その後も人物を中心に視聴するのに対し、3D 条件では視線が人物に集中することなく、立体的な構造物や背景などにも視線を向けながら視聴する傾向が示されている。また、部部らは、国立科学博物館で開催された「黄金の都シナノ展」[7]のシアターで上映された 3D 映像作品の制作手法と、参加者（n=447）による主観評価について述べている[8]。その結果、ステレオレンジリングされた CG 素材は奥行き感が高く、2D3D 変換された実写素材は自然さが高く評価され、印象の差異に一定の傾向がみられた。このように、3D 映像において、適切な視差操作による安全性や快適性だけでなく、従来の 2D 映画では得られないユーザ体験が期待される。

一方、先行研究では、複数のカットによって構成されたシーンに対する評価が多く、奥行き感の演出が感情喚起する影響については検討が十分でない。感情表現は映画の演出において重要な役割を担い、観察者は映画の展開と共に登場人物の状況に感情的に入り込み、同じ感情を体験できる。Gross らは 2D 映画における感情表現について、250 本の映画の中から 78 本の映像刺激を選び、映画の視聴時に喚起される感情について感情を表す 16 種類の単語を用いて評価を行った（n=494）[9]。その結果、各映像刺激は amusement（娯
歩行性\), anger\(\)（怒り\), contentment\(\)（満足\), disgust\(\)（嫌悪\), fear\(\)（恐怖\), neutral\(\)（中立\), sadness\(\)（悲しみ\), surprise\(\)（驚き\)の感情で評価することを明らかにした。

すなわち 2D 映画の場合\, 映像表現に演出を加えることで特定の感情が喚起されることが確かめられた。一方\, 3D 映画の場合\, 2D 映像の表現にさらに両眼視差を付加することで奥行き感を演出し\, 各シーンにおける感情を表現している\([10][11]\)。奥行き感の演出は 3D 映画制作におけるパノラマの側面が強く\, 3D 映画と比べて一

般に公開された作品数も少ないとされる。演出と感情喚起に関連する情報が乏しいのが現状である。

本研究では先行研究の知見を踏まえ\, 3D 映画における感情の演出が観察者の感情喚起に与える影響を調べることを目的とした。3D 映画のなか\, ホラーマップビを対象とし\, 特定感情を喚起する映像を対象に\, 視差分布に基づき特徴的な演出パラメータを抽出し\, 2D 条件と 3D 条件による感情喚起を比較検討した。ホラーマップビとは\, 観察者が恐怖感を味わう稽古をすることを想定して制作された映画のジャンルであり\, 震きと恐怖と関わる

演出方法や効果が明確である。恐怖感情の評価には\, 実験参加者の心理的反応として情動および覚醒に関わるアンケート調査を\, 生理的反応として皮膚電位活動を評価手法として用いた。さらに\, 恐怖に対する個人差を

調べるため\, 参加者の性差および不安度の高さによる影響について比較検討行った。

2 ホラーマップビを対象とした評価実験

映像から喚起される感情の種類や強度には個人差が大きく\, 複数の感情が同時に表れることも少なくないため\, 一律に分類するのは難しい。そこで\, 今回の実験では\, Russell の感情の円環モデル\([12]\)に基づき\, 情動

価が低で覚醒度が高い感情として嫌悪\, 怒り\, 恐怖の演

出が施された映像刺激を恐怖感情の喚起映像として定

義した。恐怖感情に関わる特徴的な演出を分類するた

め\, 映画として公開されたホラーマップビを対象とし\, プルーレイ 3D\(\)から映像クリップを抽出した。対象作品は\「ラ

ピットホラー 3D\」\,「劇場版版にたいした怖い話 3D\」\,「バイオハザード 4\(\) アフタライク 3D\」\,「ディズニー

ズ・クリス・コル・3D\」\,「貞子 3D\)」の 5 本の映画を選んだ。この中から\, 嫌悪\, 怒り\, 恐怖の感情を含むシ

ーンや\, 喚起感を与えることで切迫性が高いシーン

で\, 喚起する映像が含まれるシーンなど\, 71 個の映像クリップを選抜した。映像クリップを\, 音を削除したう

上\, 中心オブジェクトの移動速度が一定である 5 秒間

を抽出して再生時間を擬えた。立体視機能を有した 4

例の参加者（男性 2 例ずつ）にランダムに構成した映像

クリップを 3 回鑑賞してもらい\, 「怖い\' \'どちらでもない\' \'怖くない\)の 3 件を評価した。その結果\, 怖いと

回答した人の方が怖くないと回答した人よりも有意に多

い刺激を選び（\(\chi^2\) が 0.05）。恐怖喚起刺激として仮定

した刺激シーンの左右映像からデブスマップを作成し\, 視

差分布を解析して特徴的な演出パラメータを分析した。

デブスマップとは\, 左右映像のズレ量（ピクセル）を元に

奥行き情報を 256 階調のグレースケールで表現した画

像であり\, 交差性視差の最大値を白\, 非交差性視差の

最大値を黒として表示する。本研究では視差によって

再現される仮想空間を 3D 空間と定義し\, 奥行き情報を

定量化するために視差角を用いた。3D 空間を構成する

すべての視差角を算出して累積ヒストグラムにし\, 10%

視差 \, 50\% 視差 \, 90\% 視差を導出した。10\% 視差は

交差性視差方向で最大の視差から 10\% 小さい視差を\, 90\% 視差は非交差性視差方向で最大の視差

角から 10\% 小さい視差を\, 50\% 視差は中央値の視差を

意味する。本稿では\, 3D 空間の中心視差として

50\% 視差を\, 交差性視差方向の最大視差として 10\% 視差\, 非交差性視差方向の最大視差として 90\% 視差

の差を用いた。観察者は\, 3D 空間の中心が近方向に

移動することで\, 観察者と映像内の対象までの距離

が近くなり\, 遠方向に移動することで\, 対象までの距

離が遠くなるような効果が得られる。

なお\, 視差分布の解析結果より特徴的な演出パター

ンを分類した。観察者を基準とし\, 画面から\, 前後方

を Z 軸\, 左右方向を X 軸\, 上下方向を Y 軸と設定し\, 3D

の空間の中心の移動方向や有無による 3 極の演出方

法に分類した。3D 空間の中心が画面より近\, 遠方に

移動する映像を Z 軸演出と定義した。また 3D 空間の

中心が X 軸および Y 軸に移動する映像を XY 軸演出

と\, オブジェクトの動きが少なく\, 3D 空間の中心の変化が少

ない映像を不動演出と定義した。分類作業により 71 個

の映像クリップから\, 出演方法ごとに 5 個の映像クリップ

を抽出した。表 1 に各演出方法の映像クリップにおける

最大視差（交差性）\, 中心視差\, 最大視差（非交差性）

の平均値と標準偏差を示す。

<table>
<thead>
<tr>
<th>演出方法</th>
<th>最大視差（交差性）</th>
<th>中心視差</th>
<th>最大視差（非交差性）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 軸演出</td>
<td>-0.96±0.67</td>
<td>-0.11±0.44</td>
<td>0.53±0.30</td>
</tr>
<tr>
<td>XY 軸演出</td>
<td>-0.72±0.20</td>
<td>-0.39±0.69</td>
<td>0.41±0.31</td>
</tr>
<tr>
<td>不動演出</td>
<td>-0.62±0.65</td>
<td>-0.14±0.52</td>
<td>0.35±0.25</td>
</tr>
</tbody>
</table>

表 1 显示刺激の最大視差（交差性）\, 中心視差\, 最大視差

（非交差性）の平均値と標準偏差

Table 1 Mean and standard deviation of parallax angle on
directing methods
演出方法としてZ軸演出、XY軸演出、不動演出に、示し条件として3D条件、2D条件を設け、計6条件による評価実験を行った。映像刺激は、演出方法ごとに、5秒間の映像クリップを5回用意した。示し条件として、左右映像からなる3D条件と、左映像のみを示す2D条件を設けた。これにより、6条件の映像クリップ30個をランダムに組み合わせて示した。その際、同様の映像が2Dと3Dで連続して上映されないように設定した。3D映像のフォーマットはサイドバイサイドを用い、左右映像の横アスペクト比を50%に縮小した。2D映像条件では左映像を左右に並べ、3D条件と同解像度になるように設定した。刺激の示しには表面に扁平板が貼られた、46インチの3D液体ディスプレイ(E465S、HYUNDAI IT)と偏光フィルタマネを用いた。ディスプレイおよび映像刺激の解像度は1920×1080ピクセルであった。実験は暗室内で行い、照度は4点法で測定し、150lxになるように調整した。参加者には眼の高さがスクリーンの中心になるよう椅子への着席を求め、実験中は顔を用いて頭部を固定した。このとき視距離は、ディスプレイの垂直方向の有効画面の3H(171.9cm)になるように設定した(図1)。

刺激の示し中には生理指標として皮膚電位活動を測定し、示し後には心理指標としてセルフアセスメントマネキン(以下SAM)を用いた[13]。皮膚電気活動は、精神性の発汗を電気的にとらえたものである。発汗は、温熱性発汗と精神性発汗に分けるが、精神性発汗活動に起因する電位変動は、手掌と足底に顕著に出る。交感神経の支配下の汗腺活動を電気的に測定し、覚醒水準、情動状態、認知活動、情報処理過程を評価することが可能である。本実験では、再生条件や映像刺激の演出方法による覚醒水準の変化の観点から、皮膚電位反応(Skin Potential Response:以下SPR)を測定した。SPRの測定には、テクサイン社製の皮膚電位計を用いた。心理指標に用いたSAMとは、参加者の感情変化を対象とした、情動的に刺激から不快までの9段階、覚醒度を興奮・覚醒からリラックスまでの9段階で自覚症状を評価できる手法である。SAMは、感情を喚起する大規模な写真セットであるThe International Affective Picture System(IAPS)を評価するために開発された背景を持つ[14]、映像刺激によって喚起される恐怖感情にも有効と考えられる。評価時には指先にらせん、マネキンの図を用いることで、刺激呈示後の感情変化をより直感的に応えられる(図2)。

参加者には、30個のグループで構成された映像刺激に対して、視聴後の10秒間にSAMを記入してもらった。刺激呈示前の感情は中心として用いた結果、これを1セットし、5分間後を挟んで、繰り返し3試行を行った。なお、視聴および評価時の注意点として、ストーリーや画面構成などコンテンツそのものに対する評価ではなく、映像によって喚起される感情をそのまま記入するように教示した。すべての刺激を呈示した後、3D映像の見え方や恐怖感に関するインタビュー調査を行った。

参加者は20代前半の大学生30名で、正常な両眼立体視機能を持つ男女をそれぞれ15名とした。実験開始前に、実験の趣旨や方法を説明し、理解・同意の上に実験を実施した。具体的には人間工学研究のための倫理指針に基づき、実験参加者に対してインフォームド・コンセントを行った。また、実験参加者の恐怖に対する個人差を標準化するために日本語版状態・特性不安検査(State-Trait Anxiety Inventory;以下STAI)のFormXによる不安度の高さとの関連性を調査した。STAIとは、状態不安(特定時点での自己の不安)と特性不安(一般的・通常の自己の不安)の2つからなり、共に20項目の質問に4件法で回答するという方式である[15]。この尺度で点数が高いほど不安度も高く評価される。この指標を用いて状態不安における高不安と非高不安、また、特性不安における高不安と非高不安を区分する。STAIでは、状態不安は男性ともに42点以上、特性不安は男性が44点以上、女性が45点以上の場合は非高不安とされている。
3 実験結果

3.1 性差による情動価・覚醒度の変化

恐怖感情に関する自覚症状をもって、刺激を示した後は情
動価と覚醒度を評価値とし、SAM の平均値を求めた後で解
析を行った。情動価と覚醒度は性差を示す平均値を元に、性
別（男性群、女性群）を実験参加者間要因とし、指示条
件（2D、3D）と演出方法（Z 軸演出、XY 軸演出、不動演
出）を要因とする主効果の 3 要因分布解析を行った。

情動価の分布結果、性差（F(1, 448)=16.771, p<.01）
と指示条件（F(1, 448)=23.067, p<.01）、演出方法（F(2,
896)=33.411, p<.01）に主効果が認められた。性差にお
ける平均値の比較では、男性群が 4.199、女性群が
3.823 となり、女性群の情動価が 1 % 水準で有意に低い
結果となった。指示条件における平均値の比較では、
2D 条件が 4.903、3D 条件の平均値が 3.933 と、3D 条
件が 2D 条件と比べて 1 % 水準で有意に低く、すべての
演出において 3D 条件の情動価が低い結果となった。

演出方法においては、Z 軸演出 3.746、XY 軸演出が
4.093、不動演出が 4.201 となり、Z 軸演出が他の条件と
比べて 1 % 水準で有意に低い結果となった。一方、XY
軸演出と不動演出間に有意差はみられなかった。なお
指示条件と演出方法の交互作用にて有意差が認められ
る (F(2, 896)=5.825, p<.05)、下位検定として指示条件の
各条件における演出方法の単純主効果を分析した結
果 (ポンペロニ法)、2D 条件において Z 軸演出の平
均値は 3.787 となり、XY 軸演出 (4.231) と不動演出
(4.262) の平均値と比べて有意に低く (p<.01)、3D 条
件においては、Z 軸演出 (3.704)、XY 軸演出 (3.956) と
不動演出 (4.140) のすべての条件間に有意差がみられた
(p<.05)。すなわち、Z 軸演出の情動価の場合、指示条
件と関係なく Z 軸演出が顕著に低い結果となり、3D 条
件では XY 軸演出が不動演出より低い結果となった。ま
た性別と指示条件と演出方法の交互作用に有意差が
認められ (F(2, 896)=3.277, p<.05) 下位検定を行った
結果、女性群の場合、Z 軸演出において 2D 条件
(3.600) と 3D 条件 (3.360) と XY 軸演出において 2D 条
件 (4.138) と 3D 条件 (3.716) に 1 % 水準で有意差
がみられた (図 3)。

覚醒度の分析結果、指示条件 (F(1, 448)=90.757, p<
.01) と演出方法 (F(2, 896)=53.134, p<.01) の主効果
が認められた。指示条件における覚醒度の平均値の比
較では、2D 条件が 5.283 と 3D 条件の平均値が 5.630
で、すべての演出において 3D 条件の方が 2D 条件と比べ
て、覚醒度是有意に高かった。演出方法においては、Z
軸演出が 5.758、XY 軸演出が 5.364、不動演出が 5.247
となり、Z 軸演出が他条件と比べて 1 % 水準で有意に高
い結果となった。一方、情動価と同様に XY 軸演出と不
動演出の間には有意差はみられなかった (図 4)。

3.2 STAI による情動価・覚醒度の変化

STAI の分析結果、状態不安における高不安群・非
高不安群の 2 条件、特性不安における高不安群・非高
不安群の 2 条件で分類した。なお、状態不安における
高不安群が 19 例、非高不安群が 11 例であり、特性不
安における高不安群が 8 例、非高不安群が 22 例であっ
た。

状態不安における不安群の情動価を分析した結
果、不安群 (F(1, 448)=6.240, p<.05) と指示条件 (F
(1, 448)=24.280, p<.01) と演出方法 (F(2, 896)=
33.193, p<.01) に主効果が認められた。不安群にお
ける情動価の平均値の比較では、非高不安群 (3.873)
が高不安群 (4.107) と比べて 5 % 水準で有意に低い結果
となった。指示条件における平均値の比較では、2D 条
件が 4.074、3D 条件の平均値が 3.906 と、3D 条件が 2D
条件と比べて 1 % 水準で有意に低く、すべての演出に

図 3 性差における情動価の平均評定および標準偏差 (** p<.01)

図 4 性差における覚醒度の平均評定および標準偏差

Fig. 3 SAM valence scores on sex differences

Fig. 4 SAM arousal scores on sex differences
おいて 3D 条件の情動値が低い結果となった。演出方法においては、Z 軸演出 3,717、XY 軸演出が 4,070、不動演出が 4,183 となり、Z 軸演出が他の条件と比べて 1%水準で有意に低い結果となった。なお呈示条件と演出方法の交互作用に有意差が認められた (F(2, 896) =3,198, p<.05)。下位検定の結果、Z 軸演出において 2D 条件 (3,765) より 3D 条件 (3,669) の方が有意に低い傾向が (p<.05)、XY 軸演出において 2D 条件 (4,208) より 3D 条件 (3,931) の方が 5%水準で有意に低く、不動演出において 2D 条件 (4,250) より 3D 条件 (4,116) の方が 1%水準で有意に低い結果となった（図 5）。

状態不安における不安度群の覚醒度の分析結果、不安度群 (F(1,448)=7.097, p<.01) や呈示条件 (F(1,448)=81.145, p<.01）に主効果が認められた。不安度群における平均値の比較では、高不安群が 5.322、非高不安群が 5.658 となり、非高不安群の情動値が 1%水準で有意に高い結果となった。呈示条件における平均値の比較では、2D 条件が 5.321、3D 条件の平均値が 5.659 と、3D 条件が 2D 条件と比べて 1%水準で有意に高い結果となった。演出方法においては、Z 軸演出 5,788、XY 軸演出が 5,407、不動演出が 5,275 となり、すべての条件間で 5%水準で有意差がみられた。なお呈示条件と演出方法の交互作用に有意傾向がみられれた (F(2, 896) =2,666, p<.07)。下位検定の結果、Z 軸演出において 2D 条件 (5,588) より 3D 条件 (5,989) の方が、XY 軸演出において 2D 条件 (5,218) より 3D 条件 (5,596) の方が、不動演出において 2D 条件 (5,158) より 3D 条件 (5,91) の方が 1%水準で有意に高い結果となった（図 6）。

特性不安における不安群群の情動値を分析した結果、不安群群 (F(1,458)=19.928, p<.01) や呈示条件 (F(1,458)=6.117, p<.05）と演出方法 (F(2, 916)=29.682, p<.01）に主効果が認められた。不安群群における平均値の比較では、高不安群が 4.387、非高不安群が 3.928 となり、非高不安群の情動値が 1%水準で有意に低い結果となった。呈示条件における平均値の比較では、2D 条件が 4.205、3D 条件の平均値が 4.111 と、3D 条件が 2D 条件と比べて 5%水準で有意に低かった。演出方法においては、Z 軸演出 3.891、XY 軸演出が 4.208、不動演出が 4.374 となり、Z 軸演出が他の条件と比べて 1%水準で有意に低い結果となった。なお不安群群と呈示条件の交互作用に有意差が認められ (F(1,458) =4.855, p<.05），下位検定を行った結果、高不安群群において 2D 条件 (4.017) より 3D 条件 (3.839) の方が有意に低い結果となった（p<.01）。さらに、不安群群と演出方法の交互作用に有意傾向が認められれた (F(2, 916) =2.705, p=0.067）

一方、非高不安群においては Z 軸演出 (3.679) より XY 軸演出 (4.042)、Z 軸演出と不動演出 (4.064) 間に 1%水準で有意差が表れた（図 7）。

特性不安における不安群群の覚醒度を解析した結果、不安群群 (F(1,448)=57.155, p<.01) と呈示条件 (F(1,448)=48.374, p<.01）と演出方法 (F(2, 896) =38.339, p<.01）に主効果が認められた。不安群群における平均値の比較では、高不安群が 4.719、非高不安群 5.724 となり、非高不安群の情動値が 1%水準で有意に高い結果となった。呈示条件における平均値の比較では、2D 条件が 5.079、3D 条件が 5.365 と、3D 条件が 2D 条件と比べて 1%水準で有意に高い結果となった。演出方法においては、Z 軸演出 5.510、XY 軸演出が 5.138、不動演出が 5.017 となり、Z 軸演出が他の条件と比べて 1%水準で有意に高い結果となった。なお不安群群と呈示条件の交互作用に有意差が認められれた (F(1,448)=10.051, p<.01），下位検定の結果、高不安群にお
3.2 SPR の変化

SPR は、映像視聴時の 5 秒間に対して、前述の 1.6 ± 0.9 秒の時の観察を考慮し、映像視聴後 2.5 秒から示示終了後 2.5 秒間のデータを時定数 0.5sec で測定し、反応量の平均を算出した。ここでは反応量は、刺激応答時を基線として、陰性波の頂点時までの振幅と陰性波の頂点時から陽性波の頂点時までの振幅との和をとったものである[16]。振幅の平均値が高いほど覚醒度の上昇を示すといえる。平均値を元に、性格（男性、女性）を被験者間要因とし、呈示条件と演出方法を被験者内要因として 3 要因の分散分析を行った。分析結果、再生条件（F(1, 88)=4.560, p<0.05）と演出方法（F(2, 176)=2.988, p=0.053）の主効果に有意差と有意傾向が認められた。再生条件においては、2D 条件（0.189）より 3D 条件（0.201）の方が 5% 水準で有意に高かった。なお、再生条件と演出方法間の交互作用に有意傾向がみられなかった。下位検定の結果、男性群の Z 輸出条件において 2D 条件（0.191）より 3D 条件（0.219）の平均値が 1% 水準で有意に高かった。なお、男性群において Z 輸出条件において 2D 条件（0.188）より 3D 条件（0.202）の平均値が 1% 水準で有意に高い結果となった（図 9）。

3.4 インタビュー調査

「2D と 3D どっちが印象に残ったか」の質問に対し、30 例のなか 27 例が 3D 映像と答え、残りの 3 例は両方に対して、残りは 3 例に差がないと答えた。男性は 15 例のうち 14 例が、女性は 15 例のうち 13 例が 3D 映像の方が印象的と答え、なお、印象に残った場面については、「血が飛び散るシーンに嫌悪を感じた」「登場人物が画面から飛び出るシーンが怖かった」「画面の軽くに臨場感を感じた」など中心オブジェクトの移動と喚行感の変化を指摘する意見が多数報告された。
性差の結果をもとに、性差の影響を考慮する必要がある。性差の影響を考慮しない場合、実験結果に性差の影響が含まれ、分析が不適切になる可能性がある。したがって、実験計画においては、性差の影響を考慮し、可能な限り性差の影響を排除するための対策を講じることが重要である。
して、2Dと見方が異なり、適度な視差を持った部分に視線が集中することは報告されている[6]。今回の実験においても、SAM やインタビューの結果から視差の演出
が映像の見え方に影響を与え、恐怖感情を有意に喚起したことが考えられる。また、差異・非差異性視差による
奥行感の演出は、感情喚起の度合いや印象など映像の見え方にそれぞれ異なる影響を与え得る。

5 むすび
3D 映像は、両眼視差の変化を通じて奥行感を再
現する特徴を持つ。両眼視差を用いた Z 軸への演出は、
3D 映像における中心を画面より前後方向に移動させる
ことで、観察者にとって、映像までの距離や広がりの変
化として体験される。こうした視差操作は、特定の感情
を喚起するため、多くの場面に使用されている。本研究
では 3D 映像表現に効果的と思われる視差操作が観察
者の心理および生理状況に与える影響を調べることを
目的とした。3D 映像のなか、恐怖感情を喚起する映像
を対象に、視差分布を基に特徴的な演出パターンを抽
出し、感情指向と覚醒度に与える影響を心理および生理
指標を用いて検討した。また、観察者の恐怖に対する
個人差を標準化するため、性差や状態・特性不安によ
る感情指向および覚醒度の変化を測定した。
その結果、恐怖感情を喚起する刺激を示す場合、
3D 映像として 2D 条件および 3D 条件の下、演出方法と
して XY 軸演出および不動演出と Z 軸演出の

に、恐怖を感じる結果となった。つまり、3D 空間の中心や
範囲の変化は、恐怖感情を喚起するシーンにおいて、
感情と覚醒に影響を与え、3D 映像の表現の効果が高
まることが示唆された。一方、2D 映像における Z 軸演出に
も恐怖感情を喚起する結果となった。これは、2D 映
像においても、中軸オブジェクトの Z 軸移動のうえ、
単眼視差情報を強調する演出を行うことで、恐怖感情を
喚起することができることを意味する。また、Z 軸演出に
おいて 3D の条件の方が恐怖感情を喚起した結果となっ
たため、単眼視差情報と両眼視差情報の間には、奥行
感や感情への影響に対する質的差異が存在することを
示唆する。性差による分析では、男性群より女性群の
方が呈示条件および演出方法に与える影響を受ける
結果となった。性差による 3D 映像表現効果を知ることで、
観聴者に与えられた多様な視差演出が期待できる。</div>

謝辞
本研究は JSPS 科学研究費 25303439 の助成を受けたものです。
なお実験において早稲田大学の川村悠里さん（当
時）の助力を得ました。ここに記して謝意を表します。

参考文献
[1] 比留間, 福田：調節応答から見た両眼融合式立体画像
の観見条件, 電子情報通信学会論文誌, 73 (12), pp.
2047-2054 (1990)
[2] 井上, 野呂, 岩崎, 大場：視覚機能から見た立体映像
の呈示条件, テレビジョン学会誌, 48(10), pp. 1301-1305
(1994)
[3] 江本, 矢野：立体画像観見における両眼の振動と焦点
調節の不一致と視覚疲労の関係, 映像情報メディア学会誌,
biconocular disparity on a 3D display based on the
physiological characteristics of ocular accommodation,
Displays, 30(1), pp. 44-48 (2009)
[5] 5D コンソーシアム安全ガイドライン部会 : 『人間の優しい
3D 普及のための 3D 安全ガイドライン (2010 年 4 月 20 日改
訂, 関西ガイドライン ISO/IWA 準拠)』, pp. 22 (2010)
[7] 柿沼司: インターネット上の「3D スカイビューアリ」：4K
Kudo: Ergonomic evaluation of stereoscopic content for a
museum exhibition; Journal of Information Display, Vol. 12,
No. 3, pp. 159-165 (2011).
72370F-2 (2009)
(2015年9月4日受付)

[著者紹介]

金 相賢 (正会員)

2006年早稲田大学大学院国際情報通信研究科修了。2010年同大学国際情報通信研究センター招聘研究員。2013年同大学理工学研究所客員助教。2014年同大学基幹理工学部助手、現在に至る。視覚表示デバイスおよびコンテンツの時空間特性と生体影響に関する人間工学的研究に従事。博士（国際情報通信学）。

盛川 浩志 (正会員)

2003年早稲田大学大学院国際情報通信研究科修了。2004年同大学国際情報通信研究センター助手。2007年同大学理工学際基幹理工学部表現在学科助教。2013年同大学理工学際情報テクノロジー学科助教。現在に至る。クロスモーダル刺激を利用した次世代メディアコンテンツの制作、評価研究に従事。博士（国際情報通信学）