基礎論文

三次元共有仮想空間システム PalmPlaza の構築と評価

前田 泰宏*1 本田 新九郎*1 松浦 宣彦*2

3D Virtual Space on Multi-User Communication Platform “PalmPlaza”
Yasuhiro Maeda*1 Shinkuro Honda*1 Norihiko Matsuura*2

Abstract - We have developed the multi-user communication platform called "PalmPlaza". This paper describes some problems of 3D virtual spaces and the PalmPlaza system which used various web technologies. And we experiment the contents creation easiness for public end-user and evaluate this system.

Keywords : 3D Virtual Space, Multi-User, Communication, XML, WWW

1. はじめに

近年、多くの人々が Web ページを閲覧するだけでなく、HTML を利用して自分の Web ページを作成し、情報発信を行うようになった。それと共に、簡単に Web ページを作成できるオーサリングツールや、表現力・インタラクティブ性向上のための様々なプラグインが開発され、Web 上で様々な技術が急速に発展してきた。

一方、プロードバンドの普及に伴い、インターネットを利用したコミュニケーションサービスが普及してきている。この中の一例にネットワーク上に三次元仮想空間を介して、複数の人々で作業やコミュニケーションを行う三次元共有仮想空間システムがある。コンピュータの高性能化に伴い、様々な分野での利用が期待されているが、他のサービスと比べて普及しきれていない。

そこで我々は三次元仮想空間システムの問題点について検討し、それらを解決するために、Web 上で発展した様々な技術を統合した三次元共有仮想空間システム "PalmPlaza" を開発してきた。本稿では PalmPlaza の構築を説明し、更に一般のエンドユーザを対象として行った実験について述べ、評価する。

2. 三次元共有仮想空間の問題点

三次元共有仮想空間システムは、他のユーザとの出会いを促進したり、より現実に近いコミュニケーションを可能としたり、他のコミュニケーションツールと比べて様々な効果があるにもかかわらず、普及していなかった。ここでは従来の取組みを振り返り、その原因について検討した。

2.1. 従来からの取組み

従来の三次元共有仮想空間システムは様々な取組みを行っていた。様々なコミュニケーションメディアを用意してコミュニティの促進を促す。エージェントを配置してコミュニケーションの活性化を図るなど様々な機能が盛り込まれてきた。しかし空間の変更やイベント等が行われなくなるとユーザが飽きてしまい、コミュニケーションも行われず、離れてしまうという現象が見られた。このような三次元共有仮想空間は、他のコミュニケーションツールと比べて空間やイベントなどのコンテンツが重要であり、定期的なコンテンツの提供が必要である。しかし従来のシステムでは提供者が一方的にコンテンツを提供しており、提供者側の負担になっていた。

そこで我々は、ホームページと同じようにユーザ自身が空間を作成し、すぐにコミュニケーション可能な空間として提供する環境について検討してみた。
2.2. 各要素技術の問題点

ViewPoint、Calt3DなどのWeb3D技術によって、Web上で三次元CGを用いて商品紹介をしているサイトが増えつつあるように三次元CGは一般的なPCで気軽に利用できるようになってきたが、一方で作成することはまだ非常に難しい。三次元CGを制作するモデルは数多く製品が販売されてきているが、非常に高価なものが多い上、作成するのに高度なスキルを必要とする。ユーザ自身が空間を追加したり、変更したりすることを考えれば、より簡単に作成可能な環境が必要であると考えられる。

また今までの三次元共有仮想空間システムでは、作成した空間を共有するためには提供者がサーバに空間を登録する必要があった。そのため、ユーザがすでにその空間上でコミュニケーションできないだけでなく、提供者側にとっても負担がかかっていた。そこでユーザ自身が登録をして、すぐに共有可能な環境が必要であると考えられる。

また共有してコミュニケーションを行う際には、独自のクライアントソフトウェアをインストールしないで済まないことも、普段利用しているWebブラウザ等とは別に起動してコミュニケーションしなければならないこともユーザの気楽な利用を阻害していると考えられる。

そこで我々は以上の作成、登録、利用の困難さという3つの問題点を解消するため、ユーザ自身が空問を簡単に作成、サーバ登録して、すぐにコミュニケーションすることができる三次元共有仮想空間システム“PalmPlaza”を開発した。

3. PalmPlazaシステムの構成

PalmPlazaは、サーバ/クライアント型を採用した。更に三次元共有仮想空間記述言語として、PalmPlaza Markup Language（PPML）を用意した。

3.1. PPML

1. XML, JavaScriptの採用

従来の三次元共有仮想空間システムにおいてコンテンツ作成が困難であるといった問題を解決するために、PPMLはXMLの記述形態を採用し、HTML文書とより親和性の高いコンテンツ記述を可能にした。XML（eXtensible Markup Language）は、現在多くの分野においてデータ記述・流通のための次世代言語体系として注目されており、三次元コンテンツ記述においてもX3Dが注目を集めている。

PPMLは図1の記述例のようにプリミティブオブジェクトを生成し、それを組み合わせることによって三次元仮想空間を構築することができる。

このような記述言語を用意することによって、今まで三次元仮想空間を作成するために必要とされていた高価なモデリングツールを用意する必要はなく、簡単なテキストエディタさえあればHTMLを記述するような感じで作成することが可能である。

またユーザの操作によって動的に三次元共有仮想空間内にあるオブジェクトを動かしたり、色を変えたりといったようなインタラクティブな動作を記述するためにJavaScriptを使っている。これによって、三次元共有仮想空間をより変化のあるコンテンツとすることが可能である。更にHTMLで記述した二次元データを連携して動画、スクリプトを組み合わせることも可能である。

| AVATAR | <MODEL> //外部モデルファイル読み込み | <FILE>http://www.palmplaza.org/avtar.nff</FILE> |
| CASTER | //カメラ設定 | <POS>0.0,10.0,0.0</POS> |
| ORI | //初期位置 | <ORI>0.0,10.0,0.0</ORI> |
| CAMER | //カメラ設定 | <AVATAR> |

| WORLD | //プリミティブオブジェクト | <POS>-40.0,0.0,50.0</POS> |
| SIZE | //サイズ | <SIZE>18,18,18</SIZE> |
| COLOR | //色 | <COLOR>R445454</COLOR> |
| DETAIL | //モデル詳細度 | <DETAIL>0</DETAIL> |
| TEXTURE | //テクスチャ | <TEXTURE>earth.jpg</TEXTURE> |
| POS-AN | //アニメーション | <POS-AN>10.0,50.0</POS-AN> |
| SPHERE | //球体 | <SPHERE> http://www.palmplaza.org/obj.nff</FILE> |
| POS | //位置 | <POS>10.0,0.0,0.0</POS> |
| ORI | //姿勢 | <ORI>0.0,0.0,0.0</ORI> |
| SCALE | //スケール | <SCALE>1.0,1.0,1.0</SCALE> |
| DROPTEX | //テクスチャ変更 | <DROPTEX>http://www.palmplaza.org/obj.nff</FILE> |
| LINK | //リンク情報 | <LINK>http://www.soci.com</LINK> |

図1 PPMLの記述例
元情報と PPML で記述した三次元情報を連携させるといったより効果的な情報の表示をすることができる。このように XML や JavaScript といった一般的な技術を用いることにより、ユーザのコンテンツ作成に対する数値を下げるよう考慮した。

2. 共有に関する記述

ユーザ同士で空間を共有し、コミュニケーションするために必要となるサーバのアドレスやアバタの形状といった情報を記述することができる。これらの情報を記述することにより、作成した三次元仮想空間をすぐに共有し、コミュニケーションを行うことが可能になる。このようにコンテンツ作成者が三次元仮想空間の形状だけでなく、共有やコミュニケーションに関しても簡単に記述できる点が従来の VRML や X3D との大きな違いである。

また、形状の記述と同じファイルに同じ形式で記述することもまた記述するという点も同じ設定を自動的に補完されるため、より簡単に作成することができる。

更にユーザの操作によって 3 次元共有仮想空間に変化が加えられた場合、その情報を同じ仮想空間にログインしている他のクライアントとも共有することが必要である。そこで JavaScript を用いて同じ空間にログインしているクライアント間でテキストを通信する機能を付加している。これにより必要に応じて、3 次元共有仮想空間の変化を他のクライアントへ伝え、共有することを可能とした。

3. 2. クライアント

① Web ページとの統合

従来の三次元共有仮想空間システムでは、クライアントのインストールや設定が気軽な利用を困難している一因であると考えられる。そこで、PalmPlaza クライアントは ActiveX Control を使って実装し、インストールや設定を行わなくても簡単に利用できるようにした。ActiveX Control を利用したことにより、3 次元共有仮想空間を含んだ Web ページを簡単に作成、利用することができる（図 2）。更に様々な 2 次元情報と組み合わせられるだけでなく、Web 上にある他のアプリケーションと組み合わせることができるため、様々な応用が可能になる。これによって、多数存在する Web デザイナを取り込み、3 次元コンテンツの増加、普及につながると考えている。

② 三次元仮想空間共有機能

サーバのアドレスが記述されている PPML を表示すると、空間表示部の下に共有バーが自動的に現れる（図 3）。PPML にサーバのアドレスを記述しなければ、共有バーが表示されず自動的に共有できない状態になる。他のユーザと空間を共有する場合は、ログインボタンを押してユーザ ID とパスワードを入力してサーバへログインする。PPML で複数のアバタが記述されている場合は、自動的にアバタシェアリングが表示され、そのボタンを押下すことで自分のアバタを変更することができる。このように利用できるボタンだけを自動的に表示することで、利用者の操作ミスを減らすように設計した。

ログインすると、他のユーザの操作するアバタが表示される。PC にカメラが接続されていれば、アバタの顔にあたる部分に撮影された映像が表示される。更にリアルタイム音声通信を行うことができるため、映像と音声を使ってより現実に近い形で複数の人々とコミュニケーションを行うことができる。
文字チャットに比べて、コミュニケーションするため
に操作する必要がないため、空間を移動しながら
でもコミュニケーションをすることができる。

3.3 サーバ

PPML で作成した三次元仮想空間を複数の人々で
共有する際には、各クライアントから送信されている
アバタの位置や映像、音声といった情報を空間ごと
に管理するサーバを実装した。従来の三次元共有仮
想空間システムではサーバ側で空間管理用のリソー
スを確保するためにあらかじめサーバの設定ファイ
ルに空間を登録しておく必要があった。PalmPlaza
では、PPML 内に記述された空間の名前でサーバ
は管理を行い、ユーザがはじめて空間を開示した際
にサーバ側で自動的に空間管理用リソースを確保し、
共有している人がいなくなったときに空間管理用リ
ソースを開放するという方法を採用したため、あら
かじめサーバ側に登録をしなくても共有することを
可能とした。しかし、名前が同じであれば形状が違
う空間でも共有してしまうという問題があるため、
重複しないように Web ページで空間の名前だけを
登録するページを設けて、管理することとした。
このように非常に簡単な操作で登録を済ませることができ
るだけでなく、処理を待たず、すぐに共有してコ
ミュニケーションすることを可能とした。

4. エンドユーザ実験

4.1 実験方法

PalmPlaza のコンテンツが簡単に作成できるこ
と、および作成されたコンテンツを簡単にサーバへ
登録してコミュニケーションできることを実証する
ために、一般のエンドユーザを対象とした実験を行っ
た。更にユーザ自身が作成・更新し、登録した
空間がその後のコミュニケーションに対して与える
影響についても調査を行った。

コンテンツ作成実験については、モーダを利用して、
人に空間を登録し、共有するが、コンピュータを保
っており、高品質を求めて作成する美大生を対象とし
た。またコミュニティ利用実験には普段からチャッ
トを行っているユーザから見て、他のコミュニケー
ションソールとの違いを明確化するためにホームページ
を持つ主婦を対象とした。

① コミュニティ利用実験

被験者： HTML 記述可能で三次元 CG を作成し
たことがない美術大学生 6 名

期間： 2 ケ月 (1 日 1 時間程度)

到達目標： マニュアル参照して PPML の記述
方法を習得後、各自 3 つ以上の作品を作成する。

② コミュニティ利用実験

被験者： 自分のホームページを持ち、普段からチャ
ックをしている主婦 6 名

期間： 1 ケ月 (1 週間に 2 回程度の会合を開く。)

到達目標： コミュニティ利用実験で作成された
PPML に共有設定を行った後、サバに登録を行
い、定期的にコミュニケーションを行う。

各々の実験の最初には基本的な使い方を理解して
もらうために、2 時間程度の講習会を行った。コン
テント作成実験の講習会では主に PPML の記述方
法を説明し、コミュニティ利用実験の講習会では主
に PalmPlaza クライアントの操作やコミュニケー
ションの方法を説明した。実験期間中は質問や意見
のやり取りを行うために、メールリストを利用
した。最後にアンケートを行い、様々な意見を述べ
てもらった。
4. 2. 実験結果と考察

① コンテンツ作成実験

全被験者6名が半月程度で PPML の記述方法を取得し、3つ以上の作品を作成する目標を達成した。

実験過程

実験期間を4期間に分けて、その期間にできた作品のポリゴン数、テクスチャ数、作成時間の平均値の推移をまとめた（表1）。最初から1ヶ月半は慣れると共にポリゴン数もテクスチャ数も増加し、複雑な空間を作成する傾向にあった。しかし、最後の半月は、テクスチャ数は減らないが、ポリゴン数を減らして作成するという傾向がみられた。この傾向はアンケートの結果から、動作が軽い空間を作成することを考慮していたことがわかった。このように2ヶ月という短期間のうちに慣れるだけでなく、限られた表現の中で様々な工夫を行うと共に、動作環境を考慮して作成するまでにいたことがわかった。

しかし、別ファイルに記述しないで残らない JavaScript 等については、知識がないこともあり、ほとんどの人が作成することはなかった。

表1 コンテンツ作成実験結果

<table>
<thead>
<tr>
<th>区間</th>
<th>作品数</th>
<th>ポリゴン数</th>
<th>テクスチャファイル数</th>
<th>作成時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1~2週</td>
<td>6</td>
<td>197.0</td>
<td>0.2</td>
<td>7.0</td>
</tr>
<tr>
<td>3~4週</td>
<td>7</td>
<td>1234.7</td>
<td>4.0</td>
<td>8.5</td>
</tr>
<tr>
<td>5~6週</td>
<td>6</td>
<td>4365.7</td>
<td>1.3</td>
<td>12.5</td>
</tr>
<tr>
<td>7~8週</td>
<td>7</td>
<td>1456.3</td>
<td>6.9</td>
<td>6.0</td>
</tr>
</tbody>
</table>

図4 複数のコンテンツを組み合わせた空間

があり、うまくいかなかった。そこで今回のように美大生のような作成することに慣れている人々がある程度までサンプルや部品を作成し、一般ユーザは組み合わせたり、参考にして作成したりといったところからはじめるような環境が必要となると思われ、そのため PPML 利用し、モデルの再利用を行うことで、コンテンツの流通を促進し、簡単に空間の作成や変更を図ることは非常に有効だと思われる。

② コミュニティ利用実験

全ての被験者6名が1週間程度で共有設定を行い、仮想空間を自分のホームページに組込むと共に、サーバに空間名を登録し、各々仮想空間にログインしてコミュニケーションすることができるようになった。

表1 コンテンツ作成実験結果

<table>
<thead>
<tr>
<th>区間</th>
<th>作品数</th>
<th>ポリゴン数</th>
<th>テクスチャファイル数</th>
<th>作成時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1~2週</td>
<td>6</td>
<td>197.0</td>
<td>0.2</td>
<td>7.0</td>
</tr>
<tr>
<td>3~4週</td>
<td>7</td>
<td>1234.7</td>
<td>4.0</td>
<td>8.5</td>
</tr>
<tr>
<td>5~6週</td>
<td>6</td>
<td>4365.7</td>
<td>1.3</td>
<td>12.5</td>
</tr>
<tr>
<td>7~8週</td>
<td>7</td>
<td>1456.3</td>
<td>6.9</td>
<td>6.0</td>
</tr>
</tbody>
</table>

図4 複数のコンテンツを組み合わせた空間

三次元共有仮想空間へのログインに慣れてくると、コミュニケーション中にコンテンツに対する様々な意見や要望が出てくるようになった。すると空間の所有者は PPML の記述方法を自分で勉強し、アポの色を変化して種類を増やしたり、空間内のモデルの位置を整えたりといった変更を加えることが行われるようになった。また PPML で作成した仮想空間をホームページに組込んでコミュニケーションをしにくいに、Web ページをフレームで仕切って他の仮想空間へのリンクページを一緒に表示したり、
音声を使えないユーザのために文字チャットを組み合わせたりといったことが行われた（図5）。

このようにPalmPlazaは、三次元仮想空間の作成や編集が容易であり、ユーザ自身によって簡単に拡張可能であることが実証された。

■話題と移動距離の推移

実験期間中に記録した会話を①システムに関する話題、②空間に関する話題、③雑談という形で分類し、会合ごとに各話題の総時間と三次元仮想空間の移動量の推移をまとめた（図6）。

最初は操作方法の質問や映像・音声の接続確認などを行っていたため、システムに関する話題が多く、次第に空間に関する話題が占める割合が多くなる傾向があった。同じ時間に2度目にログインした時（5・6回目）には雑談の時間が多く、移動量も少なかった。いつも雑談中はほとんど動いておらず、全ての参加者が１ヶ所に固まって話しあっている傾向が見られたが原因であると考えられる。ただし空間やWebページに対して変更が加えられた後（7・8回目）は、空間に関する話題だけでなく、移動量も増えていた。これを変更された箇所を見に行き、そこで変更について話し合いを行っていたからであると考えられる。

このように空間やWebページの変更は元の仮想空間の移動量を増やすことになり、ひいては空間内での他のユーザとの出会いを促進することができるのであらかじめ考えられる。

5. おわりに

本稿では、三次元共有仮想空間システムの現状や従来の取組みについて検討した結果、定期的に空間の作成・変更やイベントなどを定期的に行うことが困難であることを問題点としてあげた。そこでこの問題点を解決するために、ユーザ自身が空間やイベントの作成を簡単に行い、気軽に共有してコミュニケーションを行うことができる三次元仮想空間システムPalmPlazaを開発してきた。そしてエンドユーザを対象とした実験を行い、簡単に作成できること、気軽に共有してコミュニケーションができることを明確にした。

今後はより多くのユーザを対象とし、長期間にわたる実験を行い、空間やイベントなどが自分増殖的に増加していく過程やコミュニティの形成過程、更にはコンテンツの流通について検討し、PalmPlazaの開発に反映していきたい。また今回の実験で課題となったオーサリングツールなどのツールについても必要となる機能を充実させていきたい。

参考文献

The Virtual Reality Society of Japan

The Virtual Reality Society of Japan


[著者紹介]

前田 泰宏

1996年私立大学理工学部計測工学卒業。1998年同大学大学院理工学研究科修士課程終了。同年，NTTヒューマンインタフェース研究所入所。以降，サイバースペースにおけるコミュニケーションの研究に従事。現在，NTTレゾナント株式会社勤務。電子情報通信学会会員。

本田 新九郎

1993年私立大学理工学部計測工学卒業。1997年12月より1999年3月まで日本学術振興会特別研究員（COE）。1998年同大学大学院理工学研究科博士課程終了。同年，NTTサイバースペース研究所入所。以降，サイバースペースコミュニケーション，インタフェースの研究に従事。現在，NTTレゾナント株式会社勤務。工学博士。電子情報通信学会，情報処理学会会員。

松浦 宣彦

1994年慶應義塾大学理工学部大学院博士課程修了。同年，NTTヒューマンインタフェース研究所入所。以降，サイバースペースにおけるコミュニケーション，ユーザインタフェース，アプライアンス構成設計などの研究に従事。現在，NTTサイバーソリューション研究所ヒューマンアプライアンスプロジェクト主任研究員。工学博士。電子情報通信学会会員。


[注解]


11 http://www.x3d.org/ (2004.2現在)

12 前田泰宏，箕浦大祐，安野貴之，石橋聡：個人発信型共有仮想空間PalmPlazaを利用した一般ユーザコミュニティ利用実験，ネットワーク社会とライフスタイルワークショップ（第3回），電子情報通信学会第2期研究会，NTSL3, pp.1-6, (2000)

(2004年2月9日受付)