火山噴気ガスの放出量の変動は火山活動や地下の状態を反映すると考えられている。ただし、こうした噴気が普段どのように範囲とメカニズムで変動しているかはあまり知られていない。これは噴気孔からのガス放出量を連続測定するには、噴気ガスが高温多湿である、硫黄が測定器の周りに析出するなどの問題があるからである。本研究では、伊豆大島の蒸気井において噴気速度をビトー管を使用して1997年9月から約6ヶ月間連続測定をおこなったので、その結果を報告する。

観測した伊豆大島の蒸気井は大島カルデラ内部の北西部に位置する。この井戸からは約90℃の蒸気が噴出している。観測当時、水を除いたガス成分（ドライガス）の化学組成は二酸化炭素約40%、酸素約12%、残りのほとんどが窒素であった。この蒸気井は硫黄系のガスを含まないため、硫黄の析出がおこらないという利点がある。

測定では、ビトー管を蒸気井上端に固定し、動圧と静圧との差圧を微分圧計でモニターした。連続測定の際、ビトー管を噴気におさめ続けるとビトー管内部に水が凝縮してしまい、正確な差圧が測れなくなる問題が生じる。そこで差圧の非測定時にはビトー管に大気を小流量流し続け、水の凝縮が起こらないようにして測定をすることにした。

図1に約6ヶ月間の噴気速度、気圧、気圧の時間微分の測定結果を示す。気圧の時間微分は縦軸を反転して表示している。この蒸気井では、ドライガス中の二酸化炭素と酸素濃度の連続測定も平衡して行っているが、二酸化炭素や酸素濃度に見られる大きな季節変動は噴気速度には見られない。噴気速度は測定期間中6.2±1.5 m/sの範囲で変動している。また、その時間変動は気圧の時間微分とよい逆相関の関係を持つ。

Igarashi et al.(2000)では、同じ蒸気井で連続測定した光ファイバー温度計を用いた蒸気井管内の鉛直温度分布データから、噴気速度の時間変動の様子を求めている。噴気速度が気圧の時間微分と逆相関の関係にあることはIgarashi et al.(2000)の結果と一致する。発表では測定方法、噴気速度と気圧との関係について議論する。

引用文献