崩壊により発生した富士火山淡沢火砕流 B の流下機構

田島靖久[1], 黒田信子[2], 滝高昌[3], 宮地真[2], 荒牧重雄[4], 遠藤邦彦[2]

The flow model of Takizawa pyroclastic flow B occurred on the northeastern flank of Fuji volcano


1. はじめに
富山県の北東斜面に分布する 1500-1700 年前の淡沢火砕流堆積物については層序や年代についての研究（田島他，2002）。堆積時の温度を 500℃以上と推定した
古地磁気学的研究（特に，2003），火砕流の急斜面における火砕物の崩壊により発生したとする研究（Tajima et al., 2003）等がなされているものの，火
砕流の発生・流下機構についてはまだ不明な点も多い。そこで，
淡沢火砕流堆積物の中でも最も広範囲に分布する
淡沢火砕流 B 堆積物（TzPﬁ-B）について，その詳細な
層序や堆積物の粒度・密度特性を調べ火砕流の発生・
流下モデルについて検討した

2. TzPﬁ-B の層序

TzPﬁ-B は，標高 2000〜3000m の淡沢周辺の谷沿いに分布する。TzPﬁ-B は，S-24（上杉，1987）の降
下フランの上位に一連の堆積物として堆積し，同層と
の時間の差は少ないと考えられる。本層は下位より 5
つのユニットに区分できる。TzPﬁ-Ba：全体の厚層は
6cm で厚層 0.5cm の細粒火山砂を主体とする薄い堆積
物と，厚層 6cm 程度の桜の良いクラスサポート堆積
物のセットよりなる。細粒火山砂層は火砕堆積物
である。TzPﬁ-Bb: 本体の厚層は約 30cm で厚さ 25cm
の赤色スコリアを含むクラスサポート堆積物（Bb1）
と，その上位の赤色スコリアを含まないクラスサポート堆積
物（Bb2）よりなる。TzPﬁ-Bc：厚層は 5cm の細粒
火山砂で，桜が比較的良く，火砕堆積物と推定される。
TzPﬁ-Bd：厚層 200cm であり，複数のユニ
ットからなり，各々の厚層は 50〜70cm 程度である，粒
径は 3〜10cm の不均一な堆積物よりなる。本層中には
直徑 3〜5cm の詰めの状のスコリアが見られる。
TzPﬁ-Be：厚層は 66cm で赤色のスコリアと細粒火山
砂砂よりなる。この層も複数のユニットや変形する，ま
た，複数のユニット内で赤色化の度合いが変化する，

3. 堆積物の分布と側方への岩相変化

TzPﬁ-B は分布より標高 3000m のスコリア列付近よ
り発生し（田島他，1999），火砕流本体は標
高 1250m まで確認できる。火砕流堆積物は高基準地域
では転動堆積物に移化する。各フローユニットのうち
Ba と Bb は 2100m付近より，Bd 3000m付近で転動堆積
物へと移り変わる。Bc, e については薄層であり，2000
mより高い標高では確認できない。

4. 火砕流の密度・密度特性

TzPﬁ-B の各ユニットから標高 1250m〜2800m まで
試料を採取し，乾式篩を用いて粒度分析を実施した，
その後，1250m〜2800m付近での Bd に相当する転動
堆積物は，3.5〜3.0 に対する均一中としたユニード
の分布（タイプ A）を有する。標高 1200m付近の Bd
は +3.0〜3.0 φ をピークとしたユニードの分布
（タイプ B）をとる。これに対し標高 1200〜1650m 付
近の Bd は，-1.5 φ を中心としたピークと+3.0〜+2.5
φ を中心としたピークを持つバイモダルな粒度分布
（タイプ C）を示す。本粒度タイプの関係は垂直化
にも見られ，標高 1350m の地点では，Ba・c はタイ
プ B，Bb はタイプ A，Bb・e はタイプ C となっている
次に，-3.5〜3.0 φ のスコリアのみかけ密度は Bd で
は標高 2400m付近で 2.21/tm^2，標高 1250m付近で 1.91/tm^2
と下流になるにつれみかけ密度の平均は小さくなる，
また標高 1350m付近ではスコリアのみかけ密度が Ba
では 1.95/tm^2，Bb では 2.11/tm^2 と上位に近づくにつれ
大きくなるものの，火砕流の最上部に相当する Bd 上部で
は 2.01/tm^2 と小さくなる。

5. 火砕流の発生機構と流下機構

今回測定した火砕流に含まれるスコリアのみかけ密
度は平均 1.9〜2.21/tm^2 である，直下の S-22-2 の密
度が 1.51/tm^2 であるのに比べ極端に大きいため，このため，
降下火砕物が落下後そのまま火砕流になったと考える
ことは難しい，一方，Bb 層中には熱融川化から低
温成分のivity 2 が含まれる岩塊が見られる，このこ
とから Bb は斜面に堆積した碎屑堆積物もしくは風
全ての一部が崩壊し流下したと推定される，なお，標高
2500m付近では TzPﬁ-B にジグソーパラッカーの入っ
た類似物を含む堆積物が確認された，

初期に堆積した Bb は，標高 2200m付近から標高 1350
m 末端付近までほぼ同じタイプ A の粒度分布を示す，標
高 2200m付近の Bb は転動性の堆積物であり，Bb 発生
堆積は末尾部末尾部上粒子が転動しながら落下し堆積した
と推定される，このような現象については，火砕な
だれと表現したほうが良い現象である，次に，Bd は，2400
〜2800m 付近ではタイプ A であるのに対して，1650m
付近より下流ではタイプ C のバイモダルな粒度分布
の堆積物が出現する，タイプ C の組成ピークは火砕な
dるのため推定されるが，細いピークについては発
生段階ではなく後に生成されたと推定される，タイプ
C の+2.0〜+2.5 φ の粒子は主として火砕なし部が流
下する過程で生成されたと考えられる，なお，Bb・d と
同様にタイプ B を有する B a c は流下過程で生成さ
れた細粒分が本体から分離し火砕堆積として堆積し
たと推定される，TzPﬁ-B は崩壊から始まり，火砕な
だれが発生し流下した（1年度），その後さらに
崩壊が増大し細粒物が増加し火砕なし部から火砕流
に移行する現象が見られた（2年度）