稠密地震観測による富士山の3次元地震波速度構造
○中道治久(米国地質調査所，防災研究)・渡辺秀文・大湊隆雄(東大地震研)
富士山稠密自然地震観測グループ

Three-dimensional seismic velocity structure of Mount Fuji as derived from a dense seismic observation during 2002-2005
Haruhisa Nakamichi (USGS, NIED), Hidefumi Watanabe (ERI), Takao Ohminato (ERI), and Gourp of dense seismic observation of Mt. Fuji

1. はじめに
富士山では、2000年秋と2001年春に深部低周波地震が多発した。その後、富士山研究が精力的であったが、ここで紹介する富士山の3次元速度構造は富士山の総合的研究の一環として2002年秋から2003年春にかけて実施された稠密地震観測の成果である。ここでは、富士山周辺の深さ25kmまでの3次元地震波速度構造を紹介する。

2. 稠密地震観測
2002年9月から2003年6月にかけて富士山周辺に大規模の富士山稠密自然地震観測グループにより28箇所に臨時地震観測点が設置された(図1黒丸)。2003年4月から6月にかけて観測点が撤収された。無線・有線・衛星デリメーターにてデータは東大地震研に転送された。また、近接する大学・防災研究・気象庁・温泉地学研究所の常設地震観測網(図1)のデータとあわせて収録とデータ処理を行ってきた。

3. データ解析
Zhang and Thubet (2003)によるDouble-differenceトモグラフィ法を用いて3次元地震波速度構造を推定した。人手にて初動時刻が読み取られている2002年10月から2004年9月までに発生した地震の中央から地震数1073、P波走時63,287、S波走時59,558を選別してデータとした。なお、この中には2002年秋に行われた富士山人工地震構造探査の川井・他、2004年)による爆破地震も含まれる。このデータから1次元速度構造を推定し、得られた1次元速度構造を初期モデルとして3次元速度構造を推定した。初期モデルに対する重み付き残差のRMSは0.17sで、最終モデルに対する重み付き残差のRMS0.05sと残差は70％程度改善した。

4. 3次元地震速度構造
図2に富士山を南北-東に横切る断面での速度構造を示す。P波速度5km/s、S波速度2.8km/sの等速度面が富士山直下で数々上がっている。また、P波速度6km/s、S波速度3.5km/sの等速度面をみると、丹沢山地と川越山地で急激にS波速度が低いが、富士山直下でS波速度5km/sとなり、富士川周辺では深さ10kmあたりと北東から南西にかけて深刻な傾向が見られる。富士山直下での数々上がりがある構造と、丹沢から富士川へとの等速度面が深く傾いている人工地震探査によるP波速度構造(川井・他、2004)にも見られる。富士山直下の深さ7-16kmにP波速度5-6km/s、S波速度3.4-3.6km/sの低速度域が見られる。深部低周波地震波はこの低速度域の中で発生がある。この低速度域のP波速度とS波速度の比(1/Vs/Vp)の15は1.5-1.7と低く、より、この低速度領域にCO2やH2Oといった揮発性物質がある可能性がある。深部低周波地動の発生にCO2が関与していることが指摘されている(Hill and Prejean, 2005)の低1/Vsの領域と低周波地震波の震源が一致することを大変興味深い。富士山の直下から東山麓の深さ15-25kmにP波速度6.0km/s、S波速度2.0km/sの低速度域が見られ、これは地殻探査で見つかった低比抵抗層の存在(Aizawa et al., 2004)とほぼ一致する。したがって、この領域にはマグマが存在すること解釈できる。