斜長石結晶サイズ分布（Crystal Size Distribution）形成に関する

1 気圧溶融実験からの検討：結晶成長速度の分散の示唆

中村敬介（神戸大、自然科学）・佐藤博明（神戸大、理）

Experimental study on the formation of crystal size distribution of plagioclase in 1707 basalt of Fuji volcano: implications for growth-dispersion
Keisuke Nakamura and Hiroaki Sato (Kobe University)

はじめに

実験方法
1 気圧・溶融/冷却結晶化実験は、富士山 1707 年玄武岩（SiO₂: 51wt%, リキダス温度は 1227℃; 原 1991 広島大改修）を粉末したものを出発物質に用いたフライサー・ループ法 (Persnall and Brenner, 1974; Donaldson et al., 1975) によって行なった。電気炉下方から H₂、CO₂混合ガスを 1:5 の割合で流し、炉内空気を N₂O バップファ付近で制御した。試料を 1200, 1220, 1227, 1235, 1270℃ で 1 時間保持溶融し、1120℃ または、1170℃ に 8−10 分もしくは数秒で冷却、その温度で保持し、0、2、4、6、8、10、15、30、60、180、360、720 分後に常温に急冷させ、実験生成物の斜長石組織を画像解析ソフト MacAspect で解析した。

結果
結晶数密度は、初期溶融温度の違いにより数桁にわたって変化する（1200-1277℃ で 10²-10⁸ mm⁻³, 1235℃ で 10²-10⁴ mm⁻³）。溶融温度の違いにともなる、最終温度へ冷却する 8 分の間、もしくは、最終温度で 0-60 分保持する間に密度が上昇する。その後、保持時間が更に増加する際の、結晶数密度は変化に乏しい。CSD はほとんどのサンプルで線形かやや下に凸の関係を示し、最終温度での保持時間の増加に伴い、勾配が緩やかになる傾向がある。 (図)

結論
初期溶融温度の違いによる結晶数密度の変化は、Loegren (1983) や Sato (1995) が指摘する均質、不均質核生成の違いと考えられる。最終温度への冷却する 8 分の間、もしくは、最終温度での保持時間の増加により、最初結晶数密度が増加する。このことは、結晶核生成速度が指数関数的に増加するため、結晶核生成は冷却開始時の冷却速度と大きな条件で生じることを示唆している。また、この間の斜長石 CSD は、線形からやや下に凸な関係を示す。特に初期温度から冷却する時間を 8-10 分でおこなった場合と数秒でおこなった場合で、いずれもほぼ線形な CSD を呈しており、数秒で冷却した場合、核生成が短時間で生じており、その後に応じて結晶サイズ分布を持つようになったことにより、結晶成長速度が一定でなく変動をしていることを示唆している。その後、最終温度での保持時間の増加に対し、密度の変化が乏しくなり、CSD の勾配が緩やかになる原因として、結晶成長速度の分散やサイズ依存性により、大きな結晶ほどより成長速度が大きいと考えられる。