マagma混合過程におけるマagmaポケットの効果：
アナログ実験による検討
○佐藤鋭一 1・佐藤博明 2

1神戸大学大学院自然科学研究科, 2神戸大学大学院理学研究科

Effect of magma pocket on the magma mixing process:
an analogue experimental approach
○Eiichiro SATO 1 and Hiroaki SATO 2

Department of Earth and Planetary Science, Graduate School of Science and Technology, Kobe University

島弧火山におけるマagma混合に関して、これまでマagma溜まり内部 (Turner and Campbell, 1986; Oldenburg et al., 1989; Couch et al., 2001) および火道内 (Koyaguchi, 1985; Blake and Campbell, 1986; Freundt and Tait, 1986) での混合が考えられてきた。火道内で混合する際に、マagmaの不安定が生じ、両マagmaが混合しうると、このときマagmaの高いレイノルズ数が必要となる (Blake and Campbell, 1986; Freundt and Tait, 1986)。しかし、溶岩流を流出するような effusive 噴火では一般的にレイノルズ数は低い。本研究では、マagmaがマagma溜まり火道を上昇し、地表に噴出する際に地下に存在するマagmaポケットを通過する場合があることに注目し、マagma混合におけるマagmaポケットの効果をアナログ実験によって検討した。実験で行ったレイノルズ数の範囲は Re = 10^2〜10^3 である。実験にはアクリル板を用いて作成した上部容器 (60 mm × 60 mm × 80 mm; 底辺 × 底辺 × 高さ) の下方にアクリルパイプ (直径 6 mm, 長さ 200 mm), ボケット (60 mm × 10 mm × 40 mm), アクリルパイプ (直径 6 mm, 長さ 200 mm) を取り付けた装置を用いた。実験は上部容器内に異なる物性をもつ 2 つの液体 (liquid-1: 低粘性 (ρ1)・低密度 (ρ1) で赤色に着色, liquid-2: 高粘性 (ρ2)・高密度 (ρ2) で無色透明) を上部に liquid-1, 下部に liquid-2 となるように密度成層させ、重力によって降下させるものである。実験開始前には、ポケット・パイプ内を liquid-2 で満たしている。実験で使用した液体は水 (1000 kg/m^3, 0.001 Pa s), 洗濯槽 (ポリビニルアルコール, 1020 kg/m^3, 0.59 Pa s), 水飴水混合物 (1340-1480 kg/m^3, 0.56-150 Pa s), グリセリン水混合物 (1210-1250 kg/m^3, 0.07-0.93 Pa s) である。実験の結果、ポケットに注入した liquid-1 の形態は 2 種類に分類できた。1 つ目の形態はポケット内で liquid-1 が扁平な円盤 (Oblate-disk shape) を形成する場合である。この場合、liquid-1 がポケットに注入した直後にいくつかの線に分岐し、2 つの液体が混ざり合うが、全体的には 2 つの液体は明瞭に分離し、ポケット内での混合は生じない。2 つ目の形態はポケット内で liquid-1 が浮き上がる場合 (Flotation shape) である。このとき liquid-1 がポケットに注入した際、ポケットの入り口付近に停滞し、その後、水平方向に拡がり、ポケット内液の liquid-2 を取り込むながら上昇する。パイプからは密度の大きな liquid-2 も同時にポケット内に供給され、liquid-2 はある程度溜まった後に、水平方向に拡がる liquid-1 を引き延ばしながら、塊となって降下する。この現象が繰り返され、liquid-1 と liquid-2 の連続的な層が形成され、mengling の様相を示す。これらの形態の違いを粘性力と重力の項による無次元パラメータ I = ρ2U(lgΔρ²) (Koyaguchi and Blake, 1989) を用いて分類した。ここで、U は速度, g は重力加速度, Δρ は液体の密度差, R は火道の半径 (本研究では、ポケットの底面積の等価円半径) である。その結果、I < 0.1 の条件で liquid-1 の浮き上がり (Flotation shape) が確認でき、2 つの液体の混合が生じる可能性がある。また、これらの形態の違いはポケットに注入する際の液体のレイノルズ数に依存せず、低レイノルズ数での混合が可能である。マagmaポケットの存在は liquid-1 の浮力の効果を増大させ、ポケット内で不安定な流れを生じさせる原因となっているので、マagma混合を促進させる一つの要因となる。