マグマの上昇に伴う自然電位変化

石戸内士（産総研・地質調査総合センター）

Self-potential changes associated with magma ascent

Tsuneco Ishido
(Geological Survey of Japan, AIST)

これまでに多くの火山で“W”字型の自然電位プロファイルが観測されている。これは、天水の下降流によってもたらされる表面電気現象の源を検討した結果である。山頂火山口付近での地熱活動に伴う何らかの電位異常が発生している状態を示すものと考えられている。天水の上昇流、噴気による天水下降流の発生などは、これらの要因と考えられる。数値シミュレーションによる検討(Ishido, 2004)からは、火口近傍の不良導体の存在が最も重要であり、地表付近の負電位領域が深部の“ゼロ電位”領域と良好導体によって結ばれる状態で火口付近の電位が大きく上昇し、“W”字型のプロファイルになることが示されている。

火口付近の高電位は、火口周辺の電気伝導度変化によって大きく変化するものと考えられるが、伝導度の変化は変質鉱物の形成や熱水対流による高塩分流体の上昇などによってもたらされる。前者は時間的にかなり安定して存在するが、後者は熱水対流系に変化する時間スケールで変化する。マグマの上昇も火口の伝導度を上げるが、これは熱水対流よりも時間的に急激な変化をもたらすものと考えられる。

今回報告する数値シミュレーションでは、山頂火山口の標高を700mとし、火口直下の標高100～600m間に変質鉱物による不良導体を仮定している。地下水位は標高200m程度であるが、帯層間で対流系が発達して高塩分流体のプロトームと浅部不良導体が接触すると、火口付近の電位は大きく増加する。図1のマグマ頭頂が0mでの電位は、t=0が対流の開始時点、t=25yrが上昇流と浅部不良導体が接触し始めた時点、t=100yrが常水に近い状態で両者が十分に接触した時点に対応している。

次に、以上のそれぞれの時点でのマグマ上昇に伴う変化を計算した。マグマ上昇は熱水対流発達の時間スケールと比べ十分に短い時間で終了するものとし、半径50mの領域が（十分深部から）マグマ頭頂付近2.5S/mの良導体に置き換わった状態について計算を行った。図1に示すように、t=0、25yrではマグマ頭頂が浅部良導体を突き抜けて地表に達するときのみ100mV程度の電位上昇が発生する。t=0、25yrではマグマ頭頂が高伝導体の空白部（熱水対流と浅部良導体の間）を通過する際にも100mVほどの電位上昇が発生する。ちなみに破線で示したカーブは、浅部良導体+熱水対流の“既存”の良導体が存在するケースについての結果である。マグマ上昇の効果は既存の良導体との関係で大きく違うものと考えられる。