新富士火山および伊豆大島火山噴出物中の 238U-230Th-226Ra 放射非平衡
栗原雄一・高橋賢臣・佐藤 純（明治大理工）

1. 略 言
ウラン系列の 238U-230Th-226Ra 放射非平衡を利用すれば、計算上は数千年から数百万年程度の現象に時間軸を与えることができるため、火山現象のタイムスケールを明らかにすることができるかもしれないと報じられている。今後は、これまでのマグマの概要を試料中のウラクとトウムについて検討するため、具体的な検討を行った。

2. 実 跟
試料中のウランとトウムは、試料を HF-HClO₄-HNO₃ の混酸により分解した後、陰イオン交換樹脂を用いて分離し、UTEVA, Spec. resin と TEVA Spec. resin によりそれぞれを精製した。精製したウランとトウムは、ステンレス酸に電着してアルファ線測定器を用いて測定し、同位体希釈分析法により定量した。一方、試料中の 226Ra は、試料を測定容器に入れて蒸発し、226Ra の母核種が放射平衡に達するまで 30 日以上保管した後、214Pb の 351 keV のケンマ線を分析器としてガマ線測定器により定量した。

3. 結果・考察
表に岩溶標準試料である JB-1a, b の 238U, 230Th, 226Ra および 230Th の放射能とウラン系列種間の放射能比を示す、図に 226Ra-230Th-226U の放射能比ダイアグラムを示す。岩溶標準試料のウランとトウムの放射能比は、半減期に近い値であったが、ウラン系列種間の放射能比は、放射平衡に達していないことが確認できた。

Table U-Th-Ra data for the GSJ rock reference materials, JB-1a, b

<table>
<thead>
<tr>
<th>Sample</th>
<th>Specific activity [Bq/g]</th>
<th>Activity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB-1a</td>
<td>205 205 364</td>
<td>1.00 ± 0.01</td>
</tr>
<tr>
<td>JB-1b</td>
<td>205 205 364</td>
<td>1.00 ± 0.02</td>
</tr>
</tbody>
</table>

新富士火山および伊豆大島火山噴出物中の 238U-230Th-226Ra 間は、230Th と 226Ra が多い 238U-230Th-226Ra が放射平衡に達するまで 30 日以上保管した後、230Pb の 351 keV のケンマ線を分析器としてガマ線測定器により定量した。

Fig. 226Ra-230Th-226U activity ratio diagram for the volcanic products from younger Fuji and Izu-Oshima volcanoes.

参考文献