〇斜石噴火はどのように始まるか
大規模斜石噴火は、一般に長く休止期間を経て大量の噴出物を突然放出し、広範囲に大災害をもたらす。従って、噴火の直前過程を理解し、適切な事前対策を取ることが重要である。東宮・竹内（2009a, b）は、樽前1667年噴火（VEI=5.5）について主に岩晶の組成・組織解析からその噴火直前過程を推定し、噴火の数日前までに高温マグマが2回以上注入されたことを明らかにした。今回、北海道駒ヶ岳1640年噴火（VEI=5.5）について同様の解析を行い、噴火直前過程の相違点を議論する。

〇2つの噴火の類似性：Ko-d噴火とTa-b噴火
北海道駒ヶ岳1640年は、その歴史時代の活動で最初かつ最大規模のものである（Ko-d降下軽石、23km²、勝井・他、1998；吉本・宇井, 1998）。噴出物は下位より、噴火最初期の岩晶が主で、斜石の正規堆積物（ドフ層）が成長する。その後に引き続き火成堆積物など（ドフ-105層）に分けられている（吉本・宇井, 1998）。最盛期（D2）は全岩SiO2が約60vol.%で磁鉄が40-50vol.%を含む。最初期（D1）は全岩SiO2がやや低く約57vol.%で磁鉄を含む。これよりも約20%が斜石を含む（竹内, 2009a, b）。

一方、樽前1667年噴出物（Ta-b降下軽石）もKo-dと良く似た地質を示す。その歴史時代の活動で最初かつ最大規模のものである（Ko-d降下軽石、23km²、勝井・他、1998；吉本・宇井, 1998）。噴出物は下位より、噴火最初期の岩晶が主で、斜石の正規堆積物（ドフ層）が成長する。その後に引き続き火成堆積物など（ドフ-105層）に分けられている（吉本・宇井, 1998）。最盛期（D2）は全岩SiO2が約60vol.%で磁鉄が40-50vol.%を含む。最初期（D1）は全岩SiO2がやや低く約57vol.%で磁鉄を含む。これよりも約20%が斜石を含む（竹内, 2009a, b）。

〇Ko-d最初期および最盛期の巣晶組織解析
一般に巣晶組織はマグマの動態を記録しており、噴火直前過程の解釈に有益である。元を拡散速度の遅い斜石長石が長い時間スケールの解析が、早い磁鉄は短い時間スケールの高分解能の解析が可能である（輝石は２次の組織の中間）。しかし、Ko-dに関してこれらのデータや議論はこれまであまり無かった。

そこで今回、それに着目してKo-dの巣晶組織解析を行った。BEI観察やEPMA解析を行った。Ko-dのD1岩晶の組織がこれまでの解析と比べて非常に良い。

〇斜石および輝石巣晶の相関
斜石および輝石における組織・巣晶の相関性は、最近の研究によって明らかにされている。Ko-dの斜石晶組織から次の4タイプに分類される：calcic core I, calcic core II, oscillatory, sodaic core。このうちcalcic core Iは均質で広いコアが特徴的である。calcic core IIのコアは、しばしば丸みを帯びたpatchy zoningを示す。4タイプの分類は、コアAn水準と良く対応し、それぞれAn92-86, 84-78, 76-67, 65-55である。巣晶组成は、最盛期ではosculatoryタイプのコア組織が確立し、最盛期の巣晶組成は、最盛期の巣晶組成と同様である。すなわち、Ko-dの斜石巣晶と輝石巣晶のコア組成は、最初期と最盛期で共通である。さらに、圧延帯が見られる。

これから斜石長石・輝石の特徴は、Ta-b巣晶の特徴（東宮・竹内, 2009a, b）と酷似している。

〇磁鉄付き斑晶はゾーニングに差異
磁鉄付き斑晶は、最盛期と最盛期とで違いが見られる。最盛期では、コアとリムも非常に均質で、Bsp30-34, Mg/Mn=5.0, Al2O3=2.3wt.%に集中する。一方の最盛期は、ほとんどの巣晶でコア組成は最盛期と一致し、一部に高Mg/Mn (>8), 高Al2O3 (>4wt.%)のものも見られる。コア組成が2タイプ存在した。また、最盛期の巣晶は特にMg/Mnで顕著なゾーニングを示す。コアがMg/Mn=5.0のものも、リムから40μm付近でMg/Mnが増加し、リムでMg/Mn=5-10になる。Al2O3もリム直近約10μmで増加して2.5-3.5wt.%になる。

磁鉄付き斑晶組成が、最初期と最盛期で異なる点はTa-bと同じで、いずれも最盛期の巣晶様組成を示す。しかし、Ta-bでは最初期の磁鉄付き斑晶組成が、最盛期と異なる点を指す。この組成はTa-b巣晶の存在が、東宮・竹内, 2009a, b)がある。