で、体内のFAの貯藏量の状態は赤血球中のFA含量によって見察が可能である。赤血球中のFA含量が140μg/mlの値ではFAの栄養役割に入ったことを示しているが、そのような値を示すヒトはカナダ人、米国人男性で全体の8%, 女性で10~15%にすぎず、90%以上の成人は1日代謝要量に十分な量のFAを日常摂取していることが判った。

カナダでは1日300±68μgのFAを含む食事を厳密に摂取するように、40名の成人男性で代謝室中で6カ月間生活させて試験を行い、血清中のFA含量は5.8±1.4 ng/ml、赤血球中のFA含量は229±44 ng/mlであり、全く正常値を維持していたことが判った。この結果を基に、1日FA要求量を100μgと見做し、食事からのFA吸収効率を50%、PteGluGの85%が利用されるとして、1983年カナダではFAのRDIとして3μg/kg体重の摂取を推奨した。

成人の最低1日所要FA摂取量は、初期期のFA不足性貧血患者にFAを硫酸塩代謝で授与することによって改善される量から約1μg/kg体重と算定されている。従って成人におけるFAのRDIは3μg/kg体重で十分であり、この量はたえそれ以上のFA摂取量が「赤血球」段階にあたるとしても、現時点に貯蔵されている量に十分にFA代謝を始めることができる安全範囲にあることが判る。なお必要増大している妊娠中のRDIは500μg/日、授乳婦では3μg/kg/日、乳児や子供では3.6μg/kg/日、老人では135μg/日が必要であると算定されている。

文献

GSH−ペルオキシダーゼ類活性を有するセレン化合物：脂肪酸とドロペルオキシドが関与する病態の治療

活性酸素が関与する疾患にについてその治療に関する研究は、以前にも一度このトピックス欄に取り上げたが、最近一層活発に行われている。とりわけスーパーオキシドアンチオン（O2−）の不均化酵素であるスーパーオキシドディスムスターゼ（SOD）は臨床への応用が期待されており、さらにタンパク質のためその適用に限界があるSODにかわってその線を含む活性中心の作用機構の検討から、O2−の不均化を触媒する金属含有低分子化合物（3,5-ジイソプロピルサルチル酸-鋼・錫体など）の開発がすすめられている。また、その効用範囲も抗炎症剤としてのみならず、抗酸化剤や鎮痛剤、抗癌剤、糖尿病治療薬など多岐にわたっている。これらの疾患の治療にSODの選用が推奨されたのは、その疾患発現にO2−類が関与していると考えられるからである。ところそSODと多岐の効果の再評価から生命体を保護する重要な酵素にGSH−ペルオキシダーゼがある。本酵素は活性中心にセレンを有し、四つのサブユニット（分子量21,000、各サブユニットには1分子のセレンが含まれる）から成っている。その反応機構は（1）～（3）のように考えられている。

\[\text{Prot-} \text{SeH+ROOH(又はH}_2\text{O)} \rightarrow \text{Prot-SeOH+ROH(又はH}_2\text{O)} \] （1）

\[\text{Prot-SeOH+GSH} \rightarrow \text{Prot-Se-SG+H}_2\text{O} \] （2）

\[\text{Prot-Se-SG+GSH} \rightarrow \text{Prot-SeH+GSSG} \] （3）

H2O2または脂肪酸やドロペルオキシドを効率よく分解して酸性代謝を正常に維持する。今回、ここで紹介するのは各種の脂肪酸とドロペルオキシドが関与する疾患と、それにおとれるペルオキシダーゼ分解酵素GSH−ペルオキシダーゼの活性変動、並びにGSH−ペルオキシダーゼ類活性を有する有機セレン化合物の作用機構と治療効果について述べられたFarharnとGrafの論文2)である。
図1. 白血球における脂肪酸ヒドロペルオキシドの生成並びに分解と、GSH-ペルオキシダーゼ及び有機硒化合物Ebselenの作用部位

図に示すような、PMNLや特にマクロファージは、図1の左半分に示したように、酵素反応によってアラキドン酸から種々のペルオキシドを生じる。すなわちシクロオキシゲナーゼを介してPGG₂やPGH₂のようなプロスタグランジン（PG）類や、5-リポキシゲナーゼなどによりロイコトリエン（LT）の前駆体であるヒドロペルオキシシントララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジカル（•OH）などの活性酸素である。これらの活性酸素による膜脂質の過酸化は膜の構造と機能を低下させ、その過酸化の過程で生じるフリーラジカルは膜タンパクや膜酵素の変性、不活性化をもたらす。さらに非酵素的に生じた過酸化脂質の2次分解産物である4-ヒドロキシノンenalや4-ヒドロキシテトラデカン、4-ヒドロキシオクテナールなどにはPMNLの化学走性作用があり、炎症反応に寄与していると思われる。炎症反応においてさらに重要をなのは図1の左半分に示した酵素的に産生されるペルオキシド類で、PG類、特にPGE₂には血管拡張作用や癒創の増大作用、浮腫促進作用などがあり、トロンポシンA₄には血小板凝集作用があり、またLTB₄にはヒドロキシシートララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジカル（•OH）などの活性酸素である。これらの活性酸素による膜脂質の過酸化は膜の構造と機能を低下させる。その過酸化の過程で生じるフリーラジカルは膜タンパクや膜酵素の変性、不活性化をもたらす。さらに非酵素的に生じた過酸化脂質の2次分解産物である4-ヒドロキシノンenalや4-ヒドロキシテトラデカン、4-ヒドロキシオクテナールなどにはPMNLの化学走性作用があり、炎症反応に寄与していると思われる。炎症反応においてさらに重要をなのは図1の左半分に示した酵素的に産生されるペルオキシド類で、PG類、特にPGE₂には血管拡張作用や癒創の増大作用、浮腫促進作用などがあり、トロンポシンA₄には血小板凝集作用があり、またLTB₄にはヒドロキシシートララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジカル（•OH）などの活性酸素である。これらの活性酸素による膜脂質の過酸化は膜の構造と機能を低下させる。その過酸化の過程で生じるフリーラジカルは膜タンパクや膜酵素の変性、不活性化をもたらす。さらに非酵素的に生じた過酸化脂質の2次分解産物である4-ヒドロキシノンenalや4-ヒドロキシテトラデカン、4-ヒドロキシオクテナールなどにはPMNLの化学走性作用があり、炎症反応に寄与していると思われる。炎症反応においてさらに重要をなのは図1の左半分に示した酵素的に産生されるペルオキシド類で、PG類、特にPGE₂には血管拡張作用や癒創の増大作用、浮腫促進作用などがあり、トロンポシンA₄には血小板凝集作用があり、またLTB₄にはヒドロキシシートララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジカル（•OH）などの活性酸素である。これらの活性酸素による膜脂質の過酸化は膜の構造と機能を低下させ、その過酸化の過程で生じるフリーラジカルは膜タンパクや膜酵素の変性、不活性化をもたらす。さらに非酵素的に生じた過酸化脂質の2次分解産物である4-ヒドロキシノンenalや4-ヒドロキシテトラデカン、4-ヒドロキシオクテナールなどにはPMNLの化学走性作用があり、炎症反応に寄与していると思われる。炎症反応においてさらに重要をなのは図1の左半分に示した酵素的に産生されるペルオキシド類で、PG類、特にPGE₂には血管拡張作用や癒創の増大作用、浮腫促進作用などがあり、トロンポシンA₄には血小板凝集作用があり、またLTB₄にはヒドロキシシートララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジカル（•OH）などの活性酸素である。これらの活性酸素による膜脂質の過酸化は膜の構造と機能を低下させ、その過酸化の過程で生じるフリーラジカルは膜タンパクや膜酵素の変性、不活性化をもたらす。さらに非酵素的に生じた過酸化脂質の2次分解産物である4-ヒドロキシノンenalや4-ヒドロキシテトラデカン、4-ヒドロキシオクテナールなどにはPMNLの化学走性作用があり、炎症反応に寄与していると思われる。炎症反応においてさらに重要をなのは図1の左半分に示した酵素的に産生されるペルオキシド類で、PG類、特にPGE₂には血管拡張作用や癒創の増大作用、浮腫促進作用などがあり、トロンポシンA₄には血小板凝集作用があり、またLTB₄にはヒドロキシシートララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジカル（•OH）などの活性酸素である。これらの活性酸素による膜脂質の過酸化は膜の構造と機能を低下させ、その過酸化の過程で生じるフリーラジカルは膜タンパクや膜酵素の変性、不活性化をもたらす。さらに非酵素的に生じた過酸化脂質の2次分解産物である4-ヒドロキシノンenalや4-ヒドロキシテトラデカン、4-ヒドロキシオクテナールなどにはPMNLの化学走性作用があり、炎症反応に寄与していると思われる。炎症反応においてさらに重要をなのは図1の左半分に示した酵素的に産生されるペルオキシド類で、PG類、特にPGE₂には血管拡張作用や癒創の増大作用、浮腫促進作用などがあり、トロンポシンA₄には血小板凝集作用があり、またLTB₄にはヒドロキシシートララジン酸（HPETA）類などが生成される。このHPETA類は図1の右半分に示したように、アラキドン酸の非酵素的な自動酸化機構によっても生成する。その誘導の直接の引き金となるのは「respiratory burst」で生じるO₂⁺自身ではないが、O₂⁺から二次的に産生されるヒドロキシラジ卡尔
表1. 脂肪酸エピロペルオキシドが関与する炎症性疾患

<table>
<thead>
<tr>
<th>病</th>
<th>名</th>
<th>増大が観察される過酸化物及びその2次産物</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. リューマチ性関節炎、炎症性関節炎</td>
<td>PG類及びLT類、共役ジエン。</td>
<td>脂肪酸免疫グロブリンG（滑液中）：MDA*（血漿中）；O₂⁻産生（滑液中の多核白血球）</td>
</tr>
<tr>
<td>2. 火傷</td>
<td>PG類、TXB₂、LTB₄、MDA（血漿中）</td>
<td></td>
</tr>
<tr>
<td>3. ショック、ARDSのような急性肺障害</td>
<td>PG類、TXB₂、LT類及びこれら以外の自血球産物（血漿）</td>
<td></td>
</tr>
<tr>
<td>4. 病血後の循環再開に関する障害</td>
<td>MDA*（血小板、病血組織）</td>
<td></td>
</tr>
<tr>
<td>5. 乾齢</td>
<td>LT類及び12-HETE（過点中）：O₂⁻産生（乾齢血清とインキュベートした末梢血中の多核白血球）</td>
<td></td>
</tr>
<tr>
<td>6. 気道閉鎖症</td>
<td>LT類、共役ジエン、MDA*（咳痰中）</td>
<td></td>
</tr>
</tbody>
</table>

* MDA（malondialdehyde）は脂肪酸エピロペルオキシドの2次分解産物の1つである。

する脳疾患では、脳に過酸化脂質に由来する過酸化物性色素と鉄イオンが増加するとともにGSH=ペルオキシダーゼ活性の低下がみられる。多くの中枢神経疾患に脳過酸化反応の亢進が関与していることが報告されている。その他、アルコール中毒患者の脳に共役ジエン脂肪酸の9,11-リノール酸を自発し、アルコールによる神経障害の発現に過酸化脂質の関与が示唆されることや、結膜が正常な結膜組織でカタラーゼ活性に有意に低下しており、発癌にH₂O₂の関与が示唆されることなどの報告もある。

ところでGSH=ペルオキシダーゼの補足分子値であるセレンの摂取量の影響は疾患時にみられ、その量の変化からもエピロペルオキシドと病気との関わりが推測できる。セレンの摂取量の低下により不整脈や心臓病を伴う心臓病が報告されていることや、急性心筋梗塞患者の血小板ではGSH=ペルオキシダーゼ活性が低下していることから、ある種の心臓疾患にセレンの欠乏が関わっていることが示唆される。セレン単独あるいはセレン＋ビタミンEの両者の投与によって炎症性関節炎やリューマチ性関節炎が軽減すること、また火傷や虚血心筋障害などの動物を用いた急性心疾病モデルに対してセレニエンの投与が良好な抗炎症効果を示すことなどの報告は、炎症をはじめとするが、セレニエン投与はペルオキシダーゼ関与していることを一層明らかにするとともに、エピロペルオキシドの不活性化はこれらの疾患治療の有効な手段になることを示唆する。この観点からセレニエンの機能性とセレニエンの機能性が既知のSH=アミノ酸のSをセレニエン置換した種々の有機セレニエン化合物が合成され、その効果が調べられたが、H₂O₂や脂肪酸エピロペルオキシドを直接還元する機序のこれらの化合物は活性が低く、その毒性（LD₅₀値が数mg/kgと毒性が強いために臨床的な使用に耐えられたかった。ところが最近、従来のセレニエン化合物とはその作用機構が異なる、GSH=還元性に有効な有機セレニエン化合物が開発された。Ebseleneと名づけられたこの化合物の化学構造を図2に示したが、H₂O₂や有機ヒドロペルオキシドに対してebseleneがペルオキシダーゼ作用を発現するにはGSHが必要であり、また反応によってもセレン分子が遊離しないので毒性も低い。なお、この作用はヒドロペルオキシドの分解だけでなく、白血球の5-lipoxygenaseを直接阻害してLTの合成を抑制する作用や、LTB₄を不活性に異性体に変える作用がある（図1）。リューマチ性関節炎の治療に有効なこと、ケラゲン浮腫やグルコースオキシダーゼにより誘導される関節炎などの対策として効果的な非ステロイド性抗炎剤よりも効力が強いか、ガラクトサミン/エンドトキシンによって誘導されるペプチド型LTを介して起こると考えられているマウスの肝障害の治療にも効果を発揮することなどが報告されている。

この著者らは今後ebselene型の作用機序を有する新しい化合物の開発が、ヒドロペルオキシドの関与を考慮した種々の疾患の治療に威力を発揮するだろうと業績の最後を結んでいる。

(徳島大学 生理・衛生薬学 福沢 健治)
文献
1) 福沢健治：ビタミン，58，391-394 (1984)

バクテリオロドプシンにおける
構造と機能
——アミノ酸残基置換の効果——

バクテリオロドプシン (BR) は好塩菌 (ハロバクテリアム・ハロピアム) の細胞膜に存在するレチナールタンパク質で、光エネルギーを用いてプロトンを細胞外へ輸送する働きを持っている。このプロトン輸送の分子機構を解明することは、生体における光エネルギーの変換のしくみの基本的解釈につながるので、多くの研究者が注目している。BR のタンパク質部分 (オプシン) は 248 残基のアミノ酸からなる一本鎖のポリペプチドで、7 本のヘリックス (A-F)から成っている。これらのヘリックスは膜を垂直に貫いている (図)。all-tran レチナールはヘリックス G 上にある Lys 216 とシップ塩基で結合し、発色団となっている。

最近、Khorana 等のグループは BR 遺伝子を用いて BR の特異的アミノ酸残基を他の残基に置き換えることに成功した。彼らの手法をまとめて次のようになる。
1) BR 遺伝子の特定の部分を制限酵素によって切り取る。
2) 切り取ったフラグメント中の塩基を特定のアミノ酸残基に対応する塩基に置き換えたものを合成する。
3) 合成したフラグメントを組み込んだ新しいペプタートを調製する。
4) 新しいペプターを用いて、大腸菌の中で変異 BR を産生する。
5) 変異 BR を精製し、それを界面活性剤／リン脂質の混合ミセルの中に組み込む。

この手法で得られた変異 BR について、特定アミノ酸残基の置換の効果を調べた。

(1) ヘリックス F 上にあるアミノ酸残基の置換
レチナールはオプシンのリジン残基のアミノ酸とシップ塩基を形成し、それがプロトン化されると 440nm 付近に吸収極大を持つが、BR 中ではオプシンと相互作用して 500nm に吸収極大が移動し、この長波長移動はオプシンシフトと呼ばれている。

このオプシンシフトの原因としてシップ塩基の対イオン及び β-イオン濃度の外の電荷の影響などが候補として考えられている。Khorana 等はレチナール

四角で囲んでいるのは Tyr 残基。ヘリックス F 上において下線に付けた残基は置換した残基を示す。