3. 長期ビタミンE欠乏による微小管関連タンパク質の変化の可能性について

1）芝浦工業大学システム理工学部生命科学科生理化学研究室
2）芝浦工業大学先端工学研究機構ライフサイエンステクノロジー研究センター

福井浩二, 増田麻人1, 浦野四郎

我々はこれまでに, 培養細胞に低濃度の過酸化水素
を添加することで神経突起障害が生じる3,4) その後の
個体動物においても, ビタミンE欠乏(E欠乏)や老齢
マウスのパラフィン切片を用いた観察から, 神経領
域において同様の軸索障害が生じている事を見出
してきた5). しかし, この際1ヶ月間2ヶ月間E欠乏
食を与えて飼育したE欠乏3ヶ月群では軸索に異常
は全く確認できなかった為, 我々は5ヶ月間の長期に
渡りE欠乏食を与え, 6ヶ月に達した群において軸索
変性を確認した. この長期に渡るE欠乏が軸索変性
へ及ぼす影響を検討する為, 軸索内の主要な構成成分
である微小管に関連するタンパク質について解析を
行った. その結果, 微小管の主要な構成成分である
チューブリンの重合に関与するタンパク質: CRMP-2
がE欠乏6ヶ月群では過剰にリン酸化していた. 更に,
オートファジー関連タンパク質について検討したと
ころ, E欠乏3ヶ月群ではMAPLC-2がタンパク質レベ
ルで大きく増加していたのにに対し, E欠乏6ヶ月群では
ほとんど発現していなかった. これより, 長期E欠乏
により軸索変性には, 微小管の安定性の低下による自
己リサイクル・軸索内輸送システムの機能不全がその
一因として考えられた.

3) Fukui K, et al., Redox Rep, in press

【論 議】

同部顧問 長期ビタミンE欠乏による微小管関連タ
ンパク質の変化はα-TTPノックアウトマウスで見ら
れる変化でしょうか.

福井客員 α-TTPノックアウトマウスを使用しての
検討も行った事があるが, それでは変化が生じているか
は分かりません. E欠乏6ヶ月群では, これらのこれまで
の実験ではE欠乏3ヶ月群と比べ, 運動機能に差は見ら
れませんでした. したがって, α-TTPノックアウトマ
ウスとも少し異なる脳の状態であると思います. 今後,機会があれば検討したいと思います.

松浦達也委員 1) E欠乏マウスの3ヶ月齢でα-チューブ
リンの脱アセチル化が亢進しているということです
が, その時のアセチル化の状態はどうですか. 2) 加
齢のみで神経軸索変性が起こるのではなく, E欠乏な
どの何かのイベントが加わらないと障害が起こらない
tとの考えですか.

福井客員 1) アセチル化酵素自体はまだ広く知られ
ているもののほとんど無いので, 現在, アセチル化,
ニトロ化のチューブリンの割合をタンパク質レベルで
測定しています. これにより, 重合と脱重合のバランス
が明らかに分かれます. 2) その通りです. 加齢によ
り形態的に軸索変性が生じるのではなく, この際も微
小管関連タンパク質の変性などのプラスαの何らか
のイベントが起きていると考えます.

4. トコトリエノールのシグナル伝達を介した
抗パーキンソン病効果

鳥取大学医学部病態解析医学講座統合分子医化
学分野

松浦 達也, 田島奈緒子, 堀越 洋輔, 中曽 一裕

【目的】最近の疫学研究から, ビタミンE投与によって
パーキンソン病(PD)発症が抑制される可能性が示唆
されている. PDの病態の一部に酸化ストレスが関与
することが報告されていますが, α-トコフェロール
(αT)を含む種々の抗酸化物質による発症予防や進行
抑制の試みにも関わらず, PDへの明確な効果は臨床
的にほとんど証明されていない. これらのことから,
ビタミンEには非酸化作用による抗PD効果がある
ことが予想される. 今回我々はαT以外のビタミンE
同族体としてトコトリエノール(T3)を注目し, 細胞内
シグナル伝達を介した細胞保護効果を明らかにする目
的で, PDモデル細胞およびMPP+誘発PDモデルマ
ウスを用いて研究を行った.

【方法】PDモデル細胞(SH-SY5Y細胞におけるMPP+
添加モデル)を用い, α-, β-, γ-, δ-T3の細胞保護効
果を検討した. また, DNAアレイ, 抗体アレイの結
果を参考にして, 細胞内シグナル伝達を中心としたT3
の細胞保護機構を検討した. また, マウスにMPP+を
投与するPD動物モデルを用い, T3およびT3の抗PD
効果を行動学的および病理学的に検討した.

【結果】PDモデル細胞では10 nM - 1 μMのT3が細胞
保護効果を示した. α-, β-, γ-, δ-各T3の保護効果
に顕著な差は認められなかったが, γ-, δ-T3の保護