海外最新文献抄

食糧としての藻類の培養


Chlorellaは乳酸ガス、無添食品、一定濃度および光を供給することが必要で大規模な培養と連続採出も技術的に可能である。普通培地1ユーダ当たりの乾燥Chlorellaの年産額は35tであって大豆の75tに比し著しく大きい。培地を巧みに処理すると製品中の蛋白質と脂防の量をある程度調節し得べく食料に供し得る製品を生産することも可能である。

開放式培養法を用いる場合には初の費用は少なくてすむがバクテリアおよび他の有害微生物に汚染されるおそれがあること、相当濃度の低い培養液を採取するために費用がかさむこと、高濃度の乳酸ガスを含む培地を用意することの困難さなどのために難かしい。それゆえ現在のところ密閉式が必要とみなされこのための費用は大豆、魚肉等と経済的競争をしなければならぬ場合に不利に思われる。しかし世界各地に食料増産の必要性が存し今日その効果的な解決として種類の生産を利用してよりかつその研究を進めることが必要となる。

乾燥Chlorellaがヒトの栄養として用いられるところである（G.P. Combs（Science 116, 453, 1952）によって指摘されている。すなわち基本食中の大豆ミールの代わりに真空乾燥した等量のChlorellaを5, 5, 10および20％加え初生ヒトにつき4週間発育状態を観察した。基本食類は完全食類からBa, BuおよびAの欠けたものである。乾燥Chlorella中の多くのビタミンやミネラルの分析結果は報告されている。その他他の多くの食品に比較すると栄養価は他の多くの食品に比較すると栄養価は相当に高い。食品中にChlorellaを10％加えると生産率を倍加すると食料収穫効率を25％高める。このことはB. カロチンおよびB族複合体中の多くの成分を含むことにお続くと考えられる。しかしChlorellaミールの使用に当ってはより適当な添加条件が考定されなければならない。

（Nutr. Rev. 13, 13, 1955）

国内乳酸菌の発育を促進する因子

乳鉱を飲んでいる体を直接Lactobacillus bifidusがよく発育するが乳鉱で育っている乳鉱にはこれ少ない。Bifidus菌の多い方が乳鉱の健康にはよいことは知られているが乳鉱と乳鉱とで何故この差を生ずるかがわからなかった。最近Iza, Kuhn, Rose Tomarelli（Arch. Biochem. Biophys. 48, 193, 202, 209, 214, 225, 1954; Nutr. Rev. 12, 175, 1954）がこれを一部解決した。

彼等は前にこの面を培養して乳鉱の発育因子の影響を調べてみたところ乳鉱発育の1/5しか発育促進効果がなくないことを知った。この因子は乳鉱の初乳に最も多く、ネズミ初乳と触よ。ネズミ乳およびケシ乳初乳の順であった。反発動物の乳中にには少ないと少なくな、この中間の物質としてネズミ、ネズミ、ラット、ウサギ、ウマおよびブタの乳ある。人の分泌物乳をMecanium、精液、胃液、唾液、湯が比較的多いことがわかった。

この成分を乳鉱から分離するために脱脂乳から蛋白をパリウム、硫酸、塩類をイオン交換樹脂で脱いたのち乳鉱は活性炭に吸着し脱出することによって分離した。なお純粋になったものを加水分解すると酵酸、グルコサミン、フクール、ブドウ糖、ガラクトース等が得られた。

その後ブタの胃粘膜が最も有効成分の含量が高いことがわかったので、これから有効成分を活性炭に吸着させ酵酸で溶出して得た酸性のクロトグラフィーを行