医薬品こしてのビタミンの需要供給*

厚生省業務局製薬課 田中正一

DEMAND AND SUPPLY OF VITAMINS AND VITAMIN PREPARATIONS IN JAPAN

Shoichi Tanaka
Section of Drug Manufacture, Bureau of Pharmaceutical Supply, Ministry of Welfare and Public Health, Tokyo

わが国におけるビタミンの生産は終戦前より小規模ながらかなり多種類であったが、需要の増大と技術の向上とが相まって生産の合理化が行われたのは戦後のことであるし、その発展は誠にめざましく、最近では重要性を含むすべてつまりもよい国内需要を充足し、さらに大量の輸出に応じ得る体制を整えるに至り、それらの品質は国際水準にまで向上され、価格も大巾に切下げられている。このような体制を整えたビタミンとしては、A、B1、B2、ビオチン酸アミド、C、葉酸、Kをあげることができるし、また近年効果を増幅に使っているものにB1含む。また技術の角度からビタミンの製造をみると、わが国も含めて海外にはこり得るものはSバニ酸によるB1の製造、砂糖を出発原料とするB2の合成、さらに経済を利用するなどCにみられる技術の改良をあげることができる。とくにSバニ酸は医薬品のうちで海外に技術援助を行っている唯一のケースである。現在でもお輸入に依存しているビタミンとしてはB1、B2、バニチン酸カルシウム、Eがあるが、これらのビタミンは現状では何れもあまり大きな需要が期待できないものといえよう。かくの如くビタミン類の生産に急速な発展をみた原因を考えると保健衛生に対する国民一般の認識の向上、強化食品の発展、総合ビタミンの需要の増大。輸出の進展等をあげることができる。医薬品としてのビタミンの需要は輸出によりさらにその開拓を期待されるが、今後におけるビタミンの発展を促進し得る重大な要素はやはり食品強化の普及いかんにあると考えられる。つぎに医薬品としてのビタミンを生産金額の上からみると年間約50億円で、これは医薬品総生産金額の約12％を占めており、これに対する微生物物および化学療法剤のそれはそれぞれ16％および8.4％を示している。また各種ビタミンの生産金額の内訳は表1の鉄でB1および総合ビタミンが圧倒的に多くそれぞれ総生産金額の約30％を占めている。

<table>
<thead>
<tr>
<th>医薬品総生産金額</th>
<th>28年</th>
<th>29年</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビタミン製剤</td>
<td>7,991,594</td>
<td>8,920,710</td>
</tr>
<tr>
<td></td>
<td>10.5%</td>
<td>12.1%</td>
</tr>
<tr>
<td>内</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A, Dおよびそれを含む製剤</td>
<td>413,319</td>
<td>5.2%</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他のB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>部</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他のビタミン製剤</td>
<td>1,159,777</td>
<td>14.5%</td>
</tr>
<tr>
<td>総計</td>
<td>75,646,788</td>
<td>73,937,502</td>
</tr>
</tbody>
</table>

表1. 医薬品総生産金額に対するビタミン製剤の比率*（単位1000円）

*本表は医薬品生産動態調査による。

昭和30年5月6日日本薬学会シンポジウムにおける講演の要旨。
ビタミン A

医薬用の A は従来局方肝油として、また A カプセルとして供給されてきたが澱合ビタミン剤の生産が始められても高単位の A エステルの必要が提起された。この事情に対応する国内の高単位 A の生産状況は、分子蒸発の研究も含めて進行しているが医薬品として要求される品質のものかなかか得られず、合成の A エステルを輸入するを得なかったのである。輸入説明は表 2 に示すとおり澱合ビタミン剤の発売とともに年々増加し昭和29年には約100万単位に換算して約3,300 kg の A エステルが輸入されている。一方、分子蒸発による国内の高単位 A エステルの製造研究はその後も開発され、この間、保存中における単位低

下の問題等もあったが最近ようやく品質、価格の両面において輸入品に匹敵するものが得られるようになった。分子蒸発による高単位 A エステルの月産能力は 700 kg もあり、これによってわれわれがしたがっていた合成による A の国産化は全くその必要がなくなったのである。高単位 A エステル以外の A の医薬用の年間需要は便宜上計算100万単位のものに換算してみると A カプセルおよび強肝油カルプセルが約 300 kg (医薬品生産動態調査による)、肝油および肝油製剤が約 120 kg (1,2 のメーカーの推定数値) であるから、医薬用の A の需要を単位の面からみるとこれはわが国のビタミン油の総生産量 (85兆単位として) の 5% 弱を占めてい

表 2. A エステルの需要概況 (g 同り100万単位に換算)

<table>
<thead>
<tr>
<th>月</th>
<th>生産需数</th>
<th>購入数</th>
<th>輸入</th>
<th>自家製造</th>
<th>小売数</th>
<th>注射</th>
<th>内服</th>
<th>食薬</th>
<th>その他の販売</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*本表は森比澱合ビタミン剤製造会社の報告による。

ビタミン B₁

終戦期における B₁ の年間生産量は 11% 以内であったが、これは表 3 に示すとおり昭和25年ごろより急速に増加し、最近では約 29% が生産されている。生産量の増加に従い価格も著しく低下された。B₁ の需要のうちで最も目立つべきことは全生産量の約 66% が輸出に向うもので、輸出先も西欧、アメリカ、ブラジル、台湾、メキシコ等広範囲の地域にわたって

ビタミン B₂

B₂ の製造は終戦期より合成投与採取の 2 方法が行われ、戦時も最近までは年間 100 kg 以内の数値が生産されていたがその価格は著しく高く、不足分は輸入に依存していた。表 4 のとおり B₂ の需要は昭和28年以降急速に増加し昭和29年には国産化と輸入を合わせると供給数は約3倍となった。このように需要の増加した原因は食品強化および澱合ビタミンの発展と内服用製剤の需要が増加したためである。昭和29年に国内生産が増大したのは新技術による B₂ 合成の工業化が完了し
表3 Baの需給表*

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>輸入</th>
<th>自家消費</th>
<th>医他薬品社用同</th>
<th>その他の販売</th>
<th>輸出</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>産</td>
<td>2,957</td>
<td>4,010</td>
<td>8,828</td>
<td>12,790</td>
<td>3,300</td>
<td>29,646</td>
<td>111,700</td>
</tr>
<tr>
<td>能</td>
<td>88,900</td>
<td>60,100</td>
<td>42,900</td>
<td>26,400</td>
<td>38,000</td>
<td>21,136</td>
<td></td>
</tr>
<tr>
<td>力</td>
<td>2,757</td>
<td>22</td>
<td>1,610</td>
<td>2,870</td>
<td>1,175</td>
<td>1,967</td>
<td></td>
</tr>
<tr>
<td>量</td>
<td>70</td>
<td>22</td>
<td>1,160</td>
<td>853</td>
<td>1,175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>(円/kg)</td>
<td>(円/kg)</td>
<td>(円/kg)</td>
<td>(円/kg)</td>
<td>(円/kg)</td>
<td>(円/kg)</td>
<td></td>
</tr>
<tr>
<td>注入</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>内服</td>
<td>1,622</td>
<td>1,883</td>
<td>1,780</td>
<td>2,229</td>
<td>1,967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>食品</td>
<td>817</td>
<td>1,270</td>
<td>1,890</td>
<td>2,198</td>
<td>1,822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>数</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td></td>
</tr>
<tr>
<td>転入</td>
<td>289</td>
<td>499</td>
<td>1,314</td>
<td>1,597</td>
<td>2,758</td>
<td>1,102</td>
<td>6</td>
</tr>
<tr>
<td>数</td>
<td>0</td>
<td>0</td>
<td>245</td>
<td>861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td></td>
</tr>
</tbody>
</table>

*Ba製造会社の報告による。製造原価は各社の平均値を採用した。

表4 Baの需給表*

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>輸入</th>
<th>自家消費</th>
<th>医他薬品社用同</th>
<th>その他の販売</th>
<th>輸出</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>産</td>
<td>51</td>
<td>90</td>
<td>64</td>
<td>20</td>
<td>417</td>
<td></td>
<td>622,500</td>
</tr>
<tr>
<td>能</td>
<td>53,760</td>
<td>48,000</td>
<td>50,480</td>
<td>98,000</td>
<td>65,100</td>
<td>53,760</td>
<td></td>
</tr>
<tr>
<td>数</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>原価</td>
<td>5</td>
<td>87</td>
<td>122</td>
<td>605</td>
<td>936</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>価格</td>
<td>11</td>
<td>20</td>
<td>22</td>
<td>100</td>
<td>60</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>量</td>
<td>37</td>
<td>152</td>
<td>134</td>
<td>620</td>
<td>650</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td></td>
</tr>
<tr>
<td>注射</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>331</td>
<td>79</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>資材</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>245</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>数</td>
<td>30</td>
<td>298</td>
<td>316</td>
<td>2,285</td>
<td>2,529</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td></td>
</tr>
</tbody>
</table>

*Ba製造会社の報告による。製造原価は各社の平均値を採用した。

ビタミンB₉

ビタミンB₉

B₉の需要は昭和27年までは表5のとおり注射用ならびに内服用製剤として多少使用される程度であったため、その生産価格が国際価格価格より約10%低い。したがってB₉の生産を開始する製造会社はなく、すべてを輸入に依存して来たのである。ところがその需要は昭和28年より急激に増加して来た。これはビタミンB₉の需要が増大したためである。最近年間需要は約700kgである。昭和29年までに至りようやくその国際化が行われるようになった。本年では国内需要を充足する程度のB₉の生産が行われる見込みである。
医薬品としてのビタミンの需要供給

表 5
B6 の 需 要 表*

<table>
<thead>
<tr>
<th>月</th>
<th>生 産 造 造</th>
<th>入</th>
<th>出</th>
<th>自 家</th>
<th>消 費</th>
<th>食</th>
<th>他</th>
<th>産 造</th>
<th>入</th>
<th>出</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭</td>
<td>250</td>
<td>0</td>
<td>-</td>
<td>309,750</td>
<td>0</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>昭</td>
<td>260</td>
<td>0</td>
<td>-</td>
<td>294,750</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>昭</td>
<td>270</td>
<td>0</td>
<td>-</td>
<td>235,100</td>
<td>0</td>
<td>26</td>
<td>73</td>
<td>23</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td>昭</td>
<td>280</td>
<td>0</td>
<td>-</td>
<td>224,600</td>
<td>0</td>
<td>307</td>
<td>183</td>
<td>39</td>
<td>7</td>
<td>674</td>
</tr>
<tr>
<td>昭</td>
<td>290</td>
<td>0</td>
<td>160,000</td>
<td>216,650</td>
<td>0</td>
<td>447</td>
<td>172</td>
<td>62</td>
<td>31</td>
<td>910</td>
</tr>
</tbody>
</table>

*B6製造会社の報告による。製造原価は各社の平均値を採用した。

表 6
B6 の 需 要 表*

<table>
<thead>
<tr>
<th>月</th>
<th>生 産 造 造</th>
<th>入</th>
<th>出</th>
<th>自 家</th>
<th>消 費</th>
<th>食</th>
<th>他</th>
<th>産 造</th>
<th>入</th>
<th>出</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭</td>
<td>250</td>
<td>0</td>
<td>-</td>
<td>207,600</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>昭</td>
<td>260</td>
<td>0</td>
<td>-</td>
<td>206,300</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>昭</td>
<td>270</td>
<td>0</td>
<td>-</td>
<td>126,800</td>
<td>0</td>
<td>41</td>
<td>28</td>
<td>19</td>
<td>9</td>
<td>77</td>
</tr>
<tr>
<td>昭</td>
<td>280</td>
<td>0</td>
<td>-</td>
<td>126,300</td>
<td>0</td>
<td>341</td>
<td>49</td>
<td>426</td>
<td>5</td>
<td>1,064</td>
</tr>
<tr>
<td>昭</td>
<td>290</td>
<td>0</td>
<td>-</td>
<td>104,200</td>
<td>0</td>
<td>494</td>
<td>18</td>
<td>495</td>
<td>36</td>
<td>1,099</td>
</tr>
</tbody>
</table>

*B6製造会社の報告による。

ビタミンC

Cは終戦前の最盛期には年間7,500 kgが生産されていったが戦災と設備の荒廃を含めて終戦直後におけ るその生産量は1,500 kgに落ちた。その後設備の復旧 と秋の生産増を図りCの生産量は年々増加の一途 をたどり、とくに最近数年間におけるその発展は表7 のとおり誠にめざましく昭和29年には80tが生産され 価格も著しく切下げられた。最近におけるCの需要の 内需をみると輸出と総合ビタミン用が圧倒的に多くそ れぞれ生産量の約30%を占めている。輸出先はアメリカ カおよび東ニ日中輸出量の90%がアメリカによって占め られている。

ビタミン D

国産品はなくすべて輸入に依存している。国産化さ れない原因としては需要量の少ない関係もあって生産 価格の高い点があげられる。輸入されているDの大部 分はD2であってD3の輸入量は少ない。この現象は価 格の関係によるものと思われる。8 当り（海外価格：D2 42.5ct, D3 60ct）最近における D3の需要は表8のと おり年間12kg程度である。
表7 Cの関給表

<table>
<thead>
<tr>
<th>月</th>
<th>生 産</th>
<th>製 造</th>
<th>入</th>
<th>出</th>
<th>自 家 消 費</th>
<th>その他の販売</th>
<th>輸</th>
</tr>
</thead>
<tbody>
<tr>
<td>所</td>
<td>産 量</td>
<td>原 価</td>
<td>量</td>
<td>価</td>
<td>量</td>
<td>量</td>
<td>量</td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(日/kg)</td>
<td>(kg)</td>
<td>(日/kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
</tr>
<tr>
<td>昭25</td>
<td>6,656</td>
<td>25,900</td>
<td>0</td>
<td>16</td>
<td>4,039</td>
<td>1,502</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>11,563</td>
<td>18,100</td>
<td>0</td>
<td>1,064</td>
<td>3,890</td>
<td>1,925</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>22,338</td>
<td>11,700</td>
<td>0</td>
<td>4,174</td>
<td>5,371</td>
<td>7,100</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>40,799</td>
<td>8,600</td>
<td>31</td>
<td>14,714</td>
<td>5,875</td>
<td>6,315</td>
<td>300</td>
</tr>
<tr>
<td>29</td>
<td>8,700</td>
<td>5,400</td>
<td>25,414</td>
<td>6,895</td>
<td>12,358</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*C製造会社の報告による。製造原価は各社の平均値を採用した。

表8 D₈の関給表

<table>
<thead>
<tr>
<th>月</th>
<th>生 産</th>
<th>製 造</th>
<th>入</th>
<th>出</th>
<th>自 家 消 費</th>
<th>その他の販売</th>
<th>輸</th>
</tr>
</thead>
<tbody>
<tr>
<td>所</td>
<td>産 量</td>
<td>原 価</td>
<td>量</td>
<td>価</td>
<td>量</td>
<td>量</td>
<td>量</td>
</tr>
<tr>
<td>(g)</td>
<td>(g)</td>
<td>(円/ℓ)</td>
<td>(g)</td>
<td>(円/ℓ)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
</tr>
<tr>
<td>昭25</td>
<td>0</td>
<td>1,072</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>684</td>
<td>0</td>
<td>460</td>
<td>100</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>527</td>
<td>0</td>
<td>1,105</td>
<td>400</td>
<td>1,600</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>388</td>
<td>0</td>
<td>2,615</td>
<td>1,000</td>
<td>5,010</td>
<td>900</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>307</td>
<td>0</td>
<td>4,311</td>
<td>1,000</td>
<td>4,042</td>
<td>400</td>
</tr>
</tbody>
</table>

*D₈製剤製造会社の報告による。

ビタミンE

すべて輸入に依存しており、その大部分が総合ビタミンに使用されている。最近におけるEの需要は表9のとり年間約600kgである。

表9 Eの関給表

<table>
<thead>
<tr>
<th>月</th>
<th>生 産</th>
<th>製 造</th>
<th>入</th>
<th>出</th>
<th>自 家 消 費</th>
<th>その他の販売</th>
<th>輸</th>
</tr>
</thead>
<tbody>
<tr>
<td>所</td>
<td>産 量</td>
<td>原 価</td>
<td>量</td>
<td>価</td>
<td>量</td>
<td>量</td>
<td>量</td>
</tr>
<tr>
<td>(kg)</td>
<td>(kg)</td>
<td>(日/kg)</td>
<td>(kg)</td>
<td>(日/kg)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(kg)</td>
</tr>
<tr>
<td>昭25</td>
<td>0</td>
<td>87,120</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>94,800</td>
<td>0</td>
<td>351</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>58,800</td>
<td>0</td>
<td>585</td>
<td>0</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>58,800</td>
<td>0</td>
<td>585</td>
<td>0</td>
<td>46</td>
<td>0</td>
</tr>
</tbody>
</table>

*E製剤製造会社の報告による。
ビタミンK

Kは終戦前より多少製造されていたが、その需要は戦後の傾向で示されている。K₃は主としてジャムやケチャップなどの食品の防腐剤として使用され、戦後間の需要を増してきており、医薬用としてはK₃-リバフロ酸ソーダ塩およびK₄-ピロヘキサノールナトリウム塩が製造する。K₃-ピロヘキサノールナトリウム塩が注射用として、またK₄が蒸留ビタミンおよび製剤用に使用されている。表10に示すとおり、最高におけるK₃の年間生産量は約1,2万kgでその65%が食品用として使用されており残りが上記各用の製品に転換されている。供給されているものと推定する。

表10 K₃の需給表

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>入</th>
<th>出</th>
<th>需要</th>
<th>家</th>
<th>消費</th>
<th>その他の販売</th>
<th>輸入</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>頭</td>
<td>数</td>
<td>原価</td>
<td>数</td>
<td>格</td>
<td>量</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(円/kg)</td>
</tr>
<tr>
<td>昭25</td>
<td>一</td>
<td>232</td>
<td>20,800</td>
<td>一</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>350</td>
<td>17,800</td>
<td>一</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>27</td>
<td>780</td>
<td>17,500</td>
<td>一</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>1,574</td>
<td>16,600</td>
<td>一</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>360</td>
<td>1,156</td>
<td>14,800</td>
<td>25,424</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*K製剤製造会社の報告による。製造原価は各社の平均値を採用した。

葉 酸

葉酸は終戦後一時輸入に依存していた時代もあったが、この間製造許可を有していない販売方法がいろいろと研究され、国内生産が始められたのは昭和25年ごろのことである。その後生産量は年々増加し、最近におけるその生産量は国内需要を充足し、生産量の約1/2が蒸留ビタミンに使用されている状況である。その需給の概況は表11のとおりである。

表11 葉酸の需給表

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>入</th>
<th>出</th>
<th>需要</th>
<th>家</th>
<th>消費</th>
<th>その他の販売</th>
<th>輸入</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>頭</td>
<td>数</td>
<td>原価</td>
<td>数</td>
<td>格</td>
<td>量</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(円/kg)</td>
</tr>
<tr>
<td>昭25</td>
<td>一</td>
<td>6</td>
<td>1,149,000</td>
<td>731,160</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>45</td>
<td>741,000</td>
<td>737,200</td>
<td>0</td>
<td>5</td>
<td>19</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>77</td>
<td>450,000</td>
<td>583,200</td>
<td>14</td>
<td>53</td>
<td>2</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>217</td>
<td>325,000</td>
<td>327,200</td>
<td>16</td>
<td>145</td>
<td>4</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>498</td>
<td>244,000</td>
<td>一</td>
<td>92</td>
<td>269</td>
<td>18</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

*葉酸製造会社の報告による。製造原価は各社の平均値を採用した。

ビタミンP

Pは終戦前よりミカンの果皮を原料として抽出によ
表12 Pの需給表

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>輸入</th>
<th>輸出</th>
<th>自家消費</th>
<th>その他販売</th>
<th>輸入</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭25</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>173</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>20</td>
<td>143</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>694</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>32</td>
<td>360</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>410</td>
<td>-</td>
<td>17,870</td>
<td>0</td>
<td>16</td>
<td>527</td>
</tr>
<tr>
<td>29</td>
<td>100</td>
<td>270</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

*P製剤製造会社の報告による。Pの製造会社は1社のため製造原価は記載しないこととした。たとしその製造価格は輸入価格よりはるかに安い。

表13 ニコチン酸アミドの需給表

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>輸入</th>
<th>輸出</th>
<th>自家消費</th>
<th>その他販売</th>
<th>輸入</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭25</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>5,600</td>
<td>0</td>
<td>262</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>5,400</td>
<td>0</td>
<td>879</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>3,027</td>
<td>10,700</td>
<td>5,400</td>
<td>2,646</td>
<td>400</td>
<td>60</td>
</tr>
<tr>
<td>29</td>
<td>1,000</td>
<td>8,408</td>
<td>3,700</td>
<td>-</td>
<td>4,547</td>
<td>809</td>
<td>98</td>
</tr>
</tbody>
</table>

*ニコチン酸アミド製造会社の報告による。製造原価は各社の平均値を採用した。

表14 パントテン酸カルシウムの需給表

<table>
<thead>
<tr>
<th>月</th>
<th>生産</th>
<th>製造</th>
<th>輸入</th>
<th>輸出</th>
<th>自家消費</th>
<th>その他販売</th>
<th>輸入</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭25</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>32,700</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>32,700</td>
<td>0</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>32,100</td>
<td>0</td>
<td>333</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>31,700</td>
<td>0</td>
<td>455</td>
<td>0</td>
</tr>
</tbody>
</table>

*パントテン酸カルシウム製剤製造会社の報告による。
ニコチン酸アミド

ニコチン酸アミドの国内生産は昭和28年から始まった。ビタミンならびにパラメンデビドを出発原料とする両法が行われている。表13の開発表には1社未報告のため、その生産量を推定し、加算すると年間生産量は約10tと考えられる。需要面をみると総合ビタミンに使用される数が圧倒的に多い。

パントテン酸カルシウム

すべて輸入に依存している。その大部分は総合ビタミンの製造に使用される。最近における年間需要量は約500kg、増加の概況は表14のとおりである。

その他の

ビタミンB₉は一般にパイザン生産からもあがるかが、その内容とその形を示したもの。ビタミンB₉についての各種の研究を載せるため、以下に示す。必要な未成熟品は月産700kgが生産されている。その原料としては大部分香港から輸入された高級品が使用されている。

血清中ビタミンB₉の迅速定量法

無菌的に採取した血液20ccからの血清をRosenthal等（J. Biol. Chem. 199, 433, 1952）の方法にしたがってPH4.6の酸性バッファーを用いて、酸化酵素としてのはThompson等（J. Biol. Chem. 184, 175, 1950）の培地のアスコルビン酸とフマル酸を除きオキシチオール酸を加えた改良培地を用いる。水解カゼインは注意しないと高剩薬の原因となる。オートクレープ前に試料あるいは標準B₉液体を加える。基質加える方にA₉液を加えるよりも無亜的に加える方が適当は低い。L. leichmanniiの発酵度は37℃、16時間培養後に比濁で測定する、血清B₉含量が130μg/cc以下の場合には一般にB₉欠乏を示す。

低蛋白飼育ネズミに対するビタミンB₉の発育効果

ネズミをカゼイン7%の低蛋白B₉欠乏飼料にB₉を加えまたは加えずに30日間飼育し体重を比較したところ、加えなかったものでは雌75.7g、雄77.4gであつたのに対し、B₉7.5%加えたものでは雌89.9g、雄92.5gとなり赤血球数は前者の42.7, 61.8に対し後者では29.8, 47.0であった。またヘモグロビンは39.7, 36.3に対し24.1, 29.7B₉添加加のもののが低かった。すなわち低蛋白飼料においてB₉は発育効果があるが造血作用においてはかえって阻害作用が認められた。（Bella, G., Vacca, C.: Biol. soc. ital. biol. sper. 28, 1700, 1952; C. A. 49, 4816, 1955）（高田）

Pyridoxalと金属イオンによるアミノ酸の酸化脱アミノ反応

α-アミノ酸の酸化的脱アミノによって相当するα-ケラ
ト酸とNH₃を生ずる反応はPALとCu, Co, Ni, Fe等の金属イオンが存在すると著しく促進される。

このPALの触媒作用は5-Desoxypyridoxalや4-
Nitrosalicylaldehydeで代用されるがSalicylaldehydeは無効に近い。金属イオンとしては上記のものが有効で、アミノ酸とPALとの間のアミノ基転位反応が触媒するもので、金属イオンは無効であるから酸化的脱アミノ反応の中間過程としてアミノ基転位反応が起こることは考えにくい。アミノ酸以外ではPAMが同様条件下でPALにな