表面と真空
Online ISSN : 2433-5843
Print ISSN : 2433-5835
特集「表面科学と機械学習」
機械学習が加速する研究データの生成・蓄積・活用
安藤 康伸
著者情報
ジャーナル 認証あり

2025 年 68 巻 6 号 p. 320-327

詳細
抄録

Data science has emerged as the fourth scientific method, following experiment, theory, and computation. Since the launch of the Material Genome Initiative in 2011, data-driven approaches such as materials informatics and process informatics have been actively applied in materials. To integrate data science into traditional research, it is essential to understand research activities as a data cycle consisting of three phases : data generation, accumulation, and utilization. This cyclic process enhances the efficiency and scope of scientific research. To illustrate the impact of data science in materials research, this paper introduces Bayesian optimization for autonomous experimental system, machine learning potentials, personal databases using JSON format, and high-throughput automatic spectral analysis. These approaches contribute to the advancement of materials science through data-driven methodologies, accelerating the data cycle.

Fullsize Image
著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top