ペンスルフロンメチルおよびベンチオカープの処理がコナギ幼植物の成長および土面への固着力に及ぼす影響*

松尾光弘***・芝山秀次郎**

要 約：除草剤の処理がコナギ幼植物の生育、特に胚軸生の形成およびその水田土壌面への固着力に及ぼす影響を知るために、ペンスルフロンメチル [methyl α-[3-(4,6-dimethoxypyrimidin-2-yl) ureido] sulfonyl]-o-toluate およびベンチオカープ [S-(4-chlorobenzyl) diethylthiocarbamate] を処理し、播種後1, 3および5日目におけるコナギ幼植物の形態、固着力および胚軸生の成長様相について調査した。

ペンスルフロンメチルは、1 ppm処理区では幼植物の成長停止と土壌への定着不良を生じたが、0.01 ppmより低濃度の処理区では成長抑制は認められず、0.001ppm処理区では種子長や全穂長が無処理区より長くなった。胚軸生については、どの処理区も個体当たりの本数はおよそ100本で、長さ長生は無処理区とほぼ同程度の長さであった。ベンチオカープは、1 ppm処理区ではコナギ幼植物の成長停止および土壌への定着不良を生じたが、低濃度になるにつれて、幼植物に対する成長抑制は小さくなり、0.001ppm処理区では無処理区の幼植物の成長ともほぼ同様であった。また個体当たりの胚軸生の本数については、どの処理区においても無処理区とほぼ同様であったが、高濃度になるにつれて長さ長生が短くなった。コナギ幼植物の土壌への固着力は、ペンスルフロンメチルの0.001ppmあるいは0.001ppm処理区では、播種後3日目は無処理区と同程度であったが、播種後5日目には無処理区の2倍近くに増大した。一方、ベンチオカープでは、播種後5日目までどの処理区においても無処理区より固着力が小

キーワード：ペンスルフロンメチル、ベンチオカープ、コナギ、幼植物、固着力

緒 言

コナギ幼植物に形成される胚軸生は、水田土壌面への固着力によって幼植物の土壌への定着に重要な役割を果たしている。したがって、除草剤により胚軸生の形成を阻害することは、コナギ幼植物の水田土壌面への活着を抑制すると考えられる。しかし、発芽したコナギにおける初期成長期の除草剤の処理の影響、特に胚軸生に関して、その形成や形態への影響を調査した報告は見られない。本研究では、日本の水田で一年生作物雑草に有効な除草剤として広く使用されている薬剤の中で、ペンスルフロンメチル [methyl α-[3-(4,6-dimethoxypyrimidin-2-yl) ureido] sulfonyl]-o-toluate およびベンチオカープ [S-(4-chlorobenzyl) diethylthiocarbamate] の2剤を供試し、それらの処理によるコナギ幼植物の成長、特に胚軸生の形成および作用について、その本数や長さに影響が見られるかどうか、またそれに由来する幼植物の水田土壌面に対する固着力への影響の程度を知るために、観察を行った。なお、本研究では、“固着”をくっつく事、“定着”を発根前の段階で幼植物が土壌にしっかりと固着する事、“活着”を発根後に土壌にしっかり固着する事を定義し、使用した。

材料および方法

本実験は、すべて佐賀大学海浜台地生物産生研究センターにおいて1999年3月～5月に実施した。供試したコナギ種子は、1996年に同センター内の水田土壌をポット内に充填して自然発生した個体を生育させ、同年10～11月に自然落下した種子を探取し、

*大要は日本雑草学会第38回講演会（1999年8月）において発表した。
**佐賀大学海浜台地生物産生研究センター, 847-0021 佐賀県唐津市松南町152-1
***現 宮崎大学農学部, 889-2192 宮崎県宮崎市学園木花台西1-1, mmatsuo@cc.miyazaki-u.ac.jp (2001年7月25日受付, 2001年10月23日受理)
5℃の低温で乾燥貯蔵したものである。これらを供試する際には、既報10)により、コナギ種子を休眠覚醒させてから実験に用いた。

供試除草剤は、ペンルフロンメチルの60％ドライプロピルメント剤およびペンチオカーべの50％乳剤の2剤とした。これら2剤の有効成分は、それぞれの単剤や混合剤の蒸水田での使用基準によれば、処理後に水深3cmにすべて溶解すると、ペンルフロンメチルが0.15～0.25ppm程度、ペンチオカーベは5～10ppmの濃度となる。一方、予備実験において、ペンチオカーべのこれらの濃度では、コナギが完全枯死することを確認したため、本実験において用いた除草剤の処理濃度は、それぞれ有効成分で1, 0.1, 0.01, 0.001および0.0001ppmとした。

除草剤は、直径90mm、深さ45mmのベリ皿内に風乾水土壌（壤土）を20mmの深さになるように入れ、上記濃度の溶液を蒸水深1mmとなるように加えて処理し、代わりに行なう土壌が沈着した後、コナギを播種した。これらのベリ皿は、30℃/20℃、16/8時間明暗同時切り換え、湿度70％の人工気象（小糸製作所、コイドトロンS-180A型）中に置いた。

発芽および成長したコナギ幼植物は、実験開始後1、3および5日に適宜5個体を選んで、前報10)と同様に播種床から植物体を引き離すのに要する最大負荷重量(g)を固定力として測定した。これらの調査個体は、FAA波で固定した後に、子葉、第1葉、種子根および全冠根の長さ、および胚軸の本数および最長軸の長さを測定した。

結果

1. 除草剤処理によるコナギ幼植物の成長に対する形態的影響

ペンルフロンメチル処理によるコナギ幼植物への影響をみると、無処理区では播種後1日目から発芽個体の土壌への定着が見られたものに対して、1ppm処理区ではコナギ播種後1、3および5日に、また0.1ppm処理区では同1日目に土壌への定着不良が観察され、それらの個体はいずれも種子根、冠根が土中へ進入せず、植物体が土壌面に浮遊する状態となっていた。

播種後5日目におけるコナギ幼植物の形態をみると、土壌に定着しなかった1ppm区では幼植物は全く成長せず、土壌に定着した区では、濃度が薄くな

![第1図] ペンルフロンメチル処理によるコナギ幼植物の成長への影響（播種後5日目）
子葉 □ 第1葉 □ 種子根 ■ 全冠根
注）図中の異なる文字間は1％水準で有意差あり（Fisher's PLSD test）
なった。一方、最長胚軸毛長は、播種後 1 日目は処理区、無処理区ともに 0.78～1.52mm の長さとなった。播種後 3 日目には、すべての処理区において最長胚軸毛は約 2 倍の長さに伸長し、2.33～3.46mm であったが、その中で 1 および 0.1ppm 区では無処理区よりも若干短く、0.001ppm および 0.0001ppm 区では僅かに長かった。播種後 5 日目には、どの処理区も播種後 3 日目とおおよそ同様であり、最長胚軸毛の長さは 2.33～2.94mm であったが、0.001ppm および 0.0001ppm 区は、播種後 3 日目と比べて短くなっていた（第 2 図）。

ベンチオカープ処理によるコナギ幼植物への影響をみると、無処理区では播種後 1 日目から発芽個体の土面への着着が見られたのに対して、1 ppm 処理区では播種後 1、3 および 5 日目にコナギ幼植物の成長停止および土面への着着不良が、また 0.1ppm 処理区では播種後 1、3 および 5 日日に土面への着着不良が観察された。これらの個体は、いずれもベンスルフロンメチルの場合と同様に、土壌面に浮遊状態となっていた。

播種後 5 日目におけるコナギ幼植物の形態をみると、1 ppm 処理区では生育の停止が見られ、また 0.1 ppm 処理区ではベンスルフロンメチル剤と同様に茎葉部の若生の生育回復が見られた。0.01ppm および 0.001ppm 処理区では、無処理区と比較して子葉、第 1 葉、種子根および全冠根の長さが短く、0.0001ppm 処理区では、それらの長さは無処理区とおおよそ同程度であった（第 3 図）。

幼植物 1 個体当たりの胚軸毛の本数は、成長停止した 1 ppm 区は 0 本であったが、それ以外の処理区および無処理区ともにおおよそ 100 本と同程度であった。胚軸毛の長さ別本数については、ベンスルフロンメチルを処理した場合と同様に、播種後 1 日目において 1.0mm 未満の長さのものは、すべての処理区において 80%以上となり、特に 0.1ppm 処理区では100%であった。その後、播種後の時間経過とともに 1.0 mm 以上の長さに伸長した胚軸毛が多くなり、0.01、0.001および 0.0001ppm 処理区では播種後 5 日目には 80%以上的ものが1.0mm以上の長さとなったが、0.1 ppm 処理区では1.0mm以上に伸長したものは、播種後 3 日目において僅かに見られた程度であり、播種後 5 日目では全く見られなかった。一方最長胚軸毛長は、播種後 1 日目において 1 および 0.1ppm 処理区では全く伸長しないかあるいは僅かに伸長が見られた程度であり、それより低濃度の処理区では無処理区とほぼ同様に最長胚軸毛長が1.17～1.46mm とな

第 2 図 ベンスルフロンメチル処理によるコナギ幼植物の胚軸毛の発生本数と最長胚軸毛長
胚軸毛の長さ別本数： ■<0.1mm □0.1≦<1.0mm △1.0≦<2.0mm □2.0≦<3.0mm
→ 最長胚軸毛長

第 3 図 ベンチオカープ処理によるコナギ幼植物の成長への影響（播種後 5 日目）
□ 子葉 □ 第 1 葉 □ 種子根 ■ 全冠根
注）図中の異なる文字間は 1%水準で有意差あり（Fisher's PLSD test）
った。播種後 3 日目では、0.1ppm 適用区は長さが 0.98 mm と、播種後 1 日目より伸長していたが、無處理区と比較するとかなり短かった。0.01ppm および 0.001 ppm 適用区においても、播種後 1 日目より伸長しており、それらの長さはそれぞれ 2.30mm および 2.24 mm となった。0.0001ppm 適用区は、無適用区と同じ様の長さで 3.01mm であったが、播種後 5 日目では、各適用区の最大胚軸長とともに播種後 3 日目の長さとほぼ同じかやや短い程度であった（第 4 図）。

2. 除草剤適用によるコナギ幼植物の土壌への固着力に対する影響

ベンスルフロンメチルでは、播種後 1 日目は處理区、無適用区ともにほとんど 0 に近い固着力を示した。播種後 3 日目は、0.01ppm 以上の高濃度適用区では 0 に近い固着力を示したが、0.001ppm および 0.0001ppm 適用区の個体は無適用区とはほぼ同様の固着力を示し、それぞれ約 1.8g および 2.6g であった。播種後 5 日目は、1ppm 適用区では変化は見られなかったが、0.1ppm 適用区の固着力は 0.2g であった。0.01ppm 適用区では播種後 3 日目よりも固着力は増大し、無適用区とおおよそ同様の 2.3g となった。一方、0.001ppm および 0.0001ppm 適用区では、3 日目よりも固着力はさらに増大し、無適用区の 2 倍あるいはそれ以上となり、それぞれ 5.4g および 4.3g であった（第 5 図）。

次にベンチオタイプ処理では、播種後 1 日目は処理区、無適用区ともにほとんど 0 に近い固着力であったが、播種後 3 日目には、無適用区が 2.3g の固着力であるのに対して、その他の適用区は無適用区のおよそ 3 分の 1 以下と小さく、0.2g～0.5g の固着力であった。播種後 5 日目では、適用区が播種後 3 日目とあまり変わらず、2.5g の固着力であったのに対して、0.001ppm および 0.0001ppm 適用区は、播種後 3 日目より固着力が増大し、それぞれ 1.4g および 2.1g となった（第 5 図）。

考 察

現在木田に使用されている除草剤の中から、コナギを含む一年生広葉草木にも有効な薬剤として、ベンスルフロンメチルおよびベンチオタイプの 2 薬剤を選び、それらによるコナギ幼植物の土壌への固着力への影響の有無について実験を行った。その場合、ベンスルフロンメチルに対しては、近年抵抗性コナギの出現が報告されているが25, 26, 本研究で供試したコナギは、実用的に使用される濃度以上の高い適用区では活着せず、枯死したため、感受性生物型であると判断された。また両除草剤とも、1～0.1 ppm ではコナギ幼植物の土壌への定着不良や成長の遅延を生じ、実用的にみたコナギの枯客効果は十
分に確認されたと考えている。

ベンズルフロノメチルは、感受性植物の細胞分裂を阻害し生育を停止させる作用があり、コナギは1,6 g a.i./ha（約0.005ppm）の薬量で地上部乾燥重を50%阻害している。実際の溝水田において使用される成分量は、おおよそ51～75g a.i./ha であり、田面水中の濃度は溝水深3 cm とした場合に約0.17～0.25 ppm となるが、本実験において1 ppm 処理区（300 g a.i./ha 相当）では、播種直後から5 日目までコナギ幼植物の成長の停止が見られた。また1 ppm 処理区（30g a.i./ha 相当）では、1 ppm に対しても至らなかったが、無処理区と比較してコナギ幼植物の各器官、ときに種子径長および全冠径長が短く、ベンズルフロノメチルの作用による生育の停止は明らかであった。幼植物1 個体当たりの胚軸毛を長さ別でみると、播種後3 日目において、無処理区では1 mm 以上2 mm 未満の長さの本数が全本数の約70% を占めているのに対し、0.1ppm 処理区では、その長さの本数は約50% であり（第2 図）、ベンズルフロノメチルの作用が胚軸毛の出現・伸長を遅らせ、それにより胚軸毛が短かったため土壌面に十分に固着できず、種子根は土中に進入できなかったものと考えられる。しかし本剤がコナギ幼植物の胚軸毛形成に対してどのような影響を及ぼしているのか、特にヨモギ属植物にみられるように、胚軸毛表面に粘液物質が生成されるならば、その物質の土壌粒子に対する付着力等への影響について、今後詳細に観察を行ってみたい。

武水田では、溝水深3 cm とした温室内ポット試験および圃場試験の中で、ベンズルフロノメチルの成分濃度が25～50g a.i./ha（約0.083～0.166ppm）の極低薬量で除草活性を示したことを確認しているが、0.001ppm 以下の低濃度処理では、コナギ幼植物の各器官や胚軸毛が無処理区よりも長く伸長し、また幼植物の土面への固着力も増大していた。このことは、実際の水田でベンズルフロノメチルが処理された後の、粗放な水管理による流亡、土壌への吸着、分解、田面の深水や大量の降雨等によって有効成分濃度が低下した場合に、残存したコナギ幼植物が旺盛な生育をする要因になることも考えられ、今後極低濃度下における本薬剤のコナギ各器官への影響、特に生理作用の解明が必要と思われた。コナギ幼植物の土面への固着力については、胚軸毛のみによる固着力は播種後3 日目までであり、その後は種子根に生じた根毛の出現・伸長によって固着力がさらに強まる。

そこで本実験の場合も、播種後5 日目には胚軸毛の他、種子根が伸長してその表皮に根毛を生じ、それが固着力に影響したものと思われたが、さらに観察を行ってみたい。

なお、0.001ppm 処理区よりも低濃度の0.0001ppm において、播種後5 日目の固着力が若干小さかったが、これは胚軸毛の腐敗による固着力の低下によるものと思われた。しかし、本実験では両処理区間において差異は認められなかった。

次にベンチオカーブは、タンパク質合成過程におけるオーキシンと拮抗して雑草体の成長を阻害するなどとされているが、本実験においても1 ppm 処理区で、播種直後から5 日目までコナギ幼植物の成長の停止が見られた。また0.1ppm、0.01ppm および0.001ppm 処理区では、無処理区と比較してコナギ幼植物の各器官の長さは短く、ベンチオカーブの作用により生育の遅延が生じている。一方0.001ppm 処理区では、播種後3 日目において最長胚軸毛の本数および長さは無処理区とほぼ同様であったが、固着力は無処理区の約1/2 と小さかった。これは、ベンズルフロノメチルと同様に、同処理区では2 mm 未満の長さの胚軸毛本数の割合が個体当たりで全本数の約60% であり（第4 図）、胚軸毛が短かったために土壌面に十分に固着できなかったものと思われた。ベンチオカーブにおいても、ベンズルフロノメチルと同様に胚軸毛の付着力などに対して何らかの影響を及ぼしているのか、さらに解明する必要がある。

本実験において、供試2 薬剤の処理区で、播種後3 日目よりも5 日目において最長胚軸毛の長さが短くなった区が多いが、これは胚軸毛が腐敗し始める時期であるために、培地から幼植物を抜き取り、あるいは土壌粒子を胚軸毛から取り除く際の折損によるものと考えられた。

謝辞

本研究を進めるにあたり、デュボンジャパンリミテッド㈱およびクミアイ化学工業㈱より供試除草剤を提供頂きました。厚く御礼申し上げます。

引用文献
1）木村一郎・前倉正・松中昭一、1971、除草剤ベンチオカーブの作用機構、雑草研究 12, 54-59
Effects of Bensulfuron-methyl and Benthiocarb on growth and adhering strength to paddy soil surface of juvenile Monochoria vaginalis seedlings

Matsuo, Mitsuhiro* *** and Hidejiro Shibayama*

Summary

We investigated growth and adhering strength to the soil surface of a paddy field of Monochoria vaginalis (Burm. f.) Kunth seedlings after applying bensulfuron-methyl (BSM) and benthiocarb (BTC). Juvenile seedlings of M. vaginalis could not adhere to the paddy soil surface after soil treatment with 1ppm of BSM, but treatments with concentrations lower than 0.01ppm did not inhibit their adhesion to soil. Both lengths of their seminal roots and total crown roots after treatment with 0.0001ppm of BSM became longer than those of the untreated control (UTC) by the fifth day after seeding. There were about 100 hypocotyl hairs per seedling in seedlings treated with all concentrations, and lengths of the longest hypocotyl hair were almost the same as those of UTC on the fifth day after seeding. M. vaginalis seedlings could not grow and adhere to soil after treatment with 1ppm BTC. The growth of M. vaginalis seedlings was about the same as or a little less than those of UTC in treatments at concentrations less of than 0.1ppm. The number of hypocotyl hairs and lengths of the longest hypocotyl hair per seedling were similar for all BTC treatment concentrations compared with those in UTC for 5 days after seeding. Adhering strengths of juvenile seedlings of M. vaginalis in UTC were 2.3g, while those treated with 0.001 and 0.0001ppm of BSM were 1.8g and 2.6g at the third day after seeding. The strengths increased and became twice those of UTC on the fifth day after seeding. In BTC, their adhering strengths were less than those of UTC five days after seeding under all treatment concentrations.

Keywords: bensulfuron-methyl, benthiocarb, Monochoria vaginalis, juvenile seedling, adhering strength