クロメプロップのイヌホタルイに対する殺草特性について
- 各種条件下での除草効果およびオキサジクロメホンとの相互作用-

○青山良一・岩井順将・藤原修治（JA 全農 営農・技術センター）

クロメプロップはアゼナ類をはじめとする一年生雑草に対して優れた除草効果を示すことから、スルホニルウレア系除草剤抵抗性雑草対策薬として多数の混合剤に使用されている。本報では、クロメプロップのイヌホタルイに対する各種条件下での除草効果およびオキサジクロメホンとの相互作用について検討した結果を報告する。

【材料及び方法】

本試験は、全農営農技術センターのガラス温室において神奈川県平塚市内で採取したイヌホタルイを供試し、3連制で行なった。調査は薬剤処理 4 ～ 5 週後に残存本数、地上部生体重を調査した。また、薬剤間の相互作用の解析に当たっては、ED90 値をプロビット法により算出し等効果線図を作成した。なお、供試薬剤としてクロメプロップフロアプル（10%）、ブレストラクロール標準品（99.7%）およびオキサジクロメホン水和剤（70%）を用いた。

試験①薬令と発生深度の影響：1/10000a ポットに沖積壌蟾土を充填して代かき後、深度 0.5, 1, 2cm に播種し、それぞれ 1, 1.5, 2, 2.5 薬期に各薬剤の所定量を土壌処理した。

試験②土壌の影響：1/10000a ポットに冲積壌蟾土、沖積壌蟾土、沖積砂壌蟾土を充填して代かき後、深度 1cm に播種し、2 薬期に各薬剤の所定量を土壌処理した。

試験③漏水の影響：1/5000a ポットに沖積壌蟾土を充填して代かき後、深度 1cm に播種し、2 ～ 2.2 薬期に各薬剤の所定量を土壌処理した。なお、漏水はペリスタルティック定量ポンプを用いて 2cm/日で薬剤処理直後から 3 日間行なった。

試験④気温の影響：屋外型クロースキャピネットにおいて 1/10000a ポットに沖積壌蟾土を充填して代かき後、深度 1cm に播種し、2 薬期に各薬剤の所定量を土壌処理した。なお、気温条件は高温区が 30℃/25℃（昼温/夜温 = 14h/10h）、中温区が 25℃/20℃、低温区が 18℃/12℃とし、高温区と中温区は薬剤処理 2 週後に、低温区は処理 2 週後から 5 日間 25℃/20℃を経てガラス温室に移動した。なお、本試験は 2 連制とした。

試験⑤オキサジクロメホンとの相互作用（発生前）：1/5000a ポットに沖積壌蟾土を充填し代かき時にイヌホタルイ種子（約 1000 粒）を混入し、翌日に各薬剤の所定量を土壌処理した。なお、発生深度、発生消長については第 1 表に示した。

試験⑥オキサジクロメホンとの相互作用（1.5 薬期）：1/10000a ポットに沖積壌蟾土を充填して代かき後、深度 1cm に播種し、1.5 薬期に各薬剤の所定量を土壌処理した。

【結果および考察】

クロメプロップのイヌホタルイに対する除草効果は、①薬令の影響が大きく、特に 2.5 薬期では効果が低かった。②一方、発生深度の影響は比較的小さいものと考えられた（第 1 図）。薬令の進んだイヌホタルイに対して、③軽壌土や壌壌土より砂壌壌土で効果が高まる傾向が認められ（第 2, 3 図）、④無漏水条件より漏水条件で効果が高まる傾向が認められた（第 4 図）。⑤気温については高温区で若干効果が高かったが、影響は小さいものと考えられた（第 5 図）。

クロメプロップとオキサジクロメホンのイヌホタルイに対する相互作用については、発生前と生育期でそれぞれ相乗作用が認められた（第 6, 7 図）。

以上の結果から、クロメプロップはイヌホタルイに対して早めに処理することで安定した効果が得られるものと考えられ、さらにオキサジクロメホンとの混合剤においては相乗作用によって効果がより安定するものと考えられた。

Aoyama, R., J. Iwai and S. Fujiwara: Herbicidal characteristics of clomeprop to Scirpus juncoides -Performance under various conditions and interaction with oxaziclomefone-
第1図 葉令と発生深度の影響

第2図 土壌の影響1

第3図 土壌の影響2

第4図 漏水の影響

第5図 気温の影響

<table>
<thead>
<tr>
<th>発生深度</th>
<th>～7日後</th>
<th>8～14日後</th>
<th>15～21日後</th>
<th>全期間合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>～10mm</td>
<td>92.5</td>
<td>10.5</td>
<td>0.5</td>
<td>93.5</td>
</tr>
<tr>
<td>11～20mm</td>
<td>59.5</td>
<td>8</td>
<td>0.5</td>
<td>68.0</td>
</tr>
<tr>
<td>21～30mm</td>
<td>32</td>
<td>14</td>
<td>1.5</td>
<td>47.5</td>
</tr>
<tr>
<td>31～40mm</td>
<td>3</td>
<td>33</td>
<td>3</td>
<td>39.0</td>
</tr>
<tr>
<td>41mm〜</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

発生本数合計 177.0 67.5 5.5 250.0 100.0
平均発生深度 (mm) 13.0mm 28.8mm 30.3mm 17.1mm

第6図 オキサジクロメロンとの相互作用（発生前）

第7図 オキサジクロメロンとの相互作用（1.5葉期）