要約：粗飼料用イネの1回刈りおよび2回刈り移植栽培におけるイネ（Oryza sativa L.）とヒメタイヌビエ（Echinochloa crus-galli (L.) Beauv. var. formosensis Ohwi）の混植による群落内のヒメタイヌビエの生育を解析した。イネ群落内のヒメタイヌビエの草丈は、イネ品種間で大きく異なり、草丈の大きいTetepおよびTaporuriではヒメタイヌビエは常にイネの草冠内にあり、草丈の小さいヒノヒカリではイネの草冠より高くなった。また、イネ単植区の群落内の相対光量子密度は、5月および6月移植でともにイネ品種間で大きく異なり、TetepおよびTaporuriで他の品種に比べて移植後および刈取後ともに速やかに小さくなった。

1回刈り移植栽培における混植区の群落内のヒメタイヌビエの生育（乾重量）は、移植40日後の相対光量子密度が20％以下で、草丈の大きいTetepおよびTaporuriでは、TetepおよびTaporuri区で大きく抑制された。一方、イネの生育（乾重量）は、TetepおよびTaporuriではヒメタイヌビエによる抑制程度が小さかった。2回刈り移植栽培におけるヒメタイヌビエおよびイネの生育に及ぼすイネ品種の影響は、1回刈り移植栽培と同様の傾向を示した。また、ヒメタイヌビエの乾重量は、1回刈りに比べて2回刈りで減少した。

粗飼料用イネとして収穫した場合、ヒノヒカリではイネホールクロップサイレージにヒメタイヌビエが40％以上混入するのに対し、TetepおよびTaporuriでは混入率は10％程度となった。

キーワード：イネ（Oryza sativa L.）、ヒメタイヌビエ（Echinochloa crus-galli (L.) Beauv. var. formosensis Ohwi）、粗飼料、2回刈り栽培、光量子密度

経 言

イネ（Oryza sativa L.）品種の形態的特性の相違による雑草抑制力の変動、とくに雑草乾物重への影響に関する研究は、水田で優占種となるイネ科雑草を対象に数多く行われており、ヒエ属一年生雑草の乾物重に対するイネの抑制力はイネのLAI、草丈などの形態的特性との間に正の相関関係があることが報告されている。

一方、近年、日本では排水等の条件が悪い水田に適応した転作作物として粗飼料用イネの作付が推奨されている。イネの粗飼料への利用に関する研究としては、粗飼料用品種の選定5）、育成17）、4）や刈り利5）、サイレージ調製法6）などすでに多くの研究が行われてきた。現在、イネの粗飼料は、ホールクロップ収穫によるサイレージ利用が中心となっている16）、サイレージの製造法などに係る飼料作物の多回刈り栽培と同様に、粗飼料用イネ栽培でも2回刈り栽培が行われている11）。この2回刈り栽培では、茎葉収量が高く、かつ刈り取り後の再生芽を旺盛に発生する品種が用いられる。前述の報告例から、このような特性を備えたイネ品種は、雑草に対する抑制力の大きさが推察される。また、2回刈り栽培の場合、1回目刈り取り（以降、1番草と呼ぶ）の際、それまでに発生した雑草を刈り取るため、イネ群落内の雑草の生育は1回刈り栽培と異なることが予想される。そこで粗飼料用イネ栽培における雑草防除技術確立のための基礎的知見を得る目的で、水田の強害雑草であるヒエ属一年生雑草の中で、北部九州の水田地域に多発するヒメタイヌビエ（Echinochloa
crus-galli (L.) Beauv. var. formosensis Ohwi）を対象として、イネ1回刈り移植栽培および2回刈り移植栽培におけるヒメタイヌピエの生育に及ぼすイネ品種の影響を検討した。

材料および方法

九州沖縄農業研究センター木田園場（福岡県筑後市）を供試して、2001年5月8日、同年6月22日、2002年5月8日および同年6月20日にイネ稚苗（品種：モーレツ、Tetep、Taporuri（他伴栽培，農業生物資源シエンバンク整理番号00005784，2001年5月移植を除く）、スプライス（2001年のみ）、西海204号（2002年のみ）、ヒノヒカリ）を移植密度22.2株/m²（30 cm×15cm）で移植した。供試イネ品種の熟期、草型、脱粒性および耐倒伏性を第1表に示した。施肥条件は、すべての区で基肥としてN, P₂O₅, K₂O を各0.6 kg/a（以下、いずれも成分量）、追肥として移植約30日後にN, P₂O₅, K₂O を各0.3kg/a、出穂期20日前にN, K₂O を各0.3kg/a 施用し、2回刈り栽培ではさらに1番草刈り直後にN, P₂O₅, K₂O を各0.5 kg/a 施用した。病害虫防除については、周辺地域の移植の慣行栽培に準じた。

ヒメタイヌピエは、福岡県筑後市（九州沖縄農研園場内）で採取したものを用い、移植日には育苗箱に播種して野外で2〜3葉期まで育苗した。2001年はイネ移植13日後、2002年5月移植は14日後、6月移植は18日後にヒメタイヌピエの苗をイネの畦間中央に植栽密度22.2株/m²で植え付けた（混植区）また、ヒメタイヌピエを植え付けないイネ単株区と、ヒメタイヌピエを単植したヒメタイヌピエ区を設置した。なお、自然発生した雑草は、あらかじめ除草剤（2001年5月移植はピラゾレート粒剤、同年6月移植、2002年5月移植および同年6月移植はシハロホッブプチル・ペンタゾン液剤）で防除し、ヒメタイヌピエ植え付け後も、適宜手取り除草を行った。

各区ともイネおよびヒメタイヌピエについて各20株の草丈の推移を調査した。また、イネ单株区では群落内地上20cmの相対光量子密度（群落外の光量子密度に対するイネ群落内の光量子密度の割合）の推移を調査した。光量子密度の測定は、小型光量センサー（小枝工業 IK-27）を用いて各区を10回計測し、その平均値をその区の値とした。得られたデータは、次の対数ロジスティック式

\[y = (D-C)/(1+(x/a)^b)+C \]

で表され、xは移植密度、yは相対光量子密度、aは変曲点、bは変曲点の傾き、Cは下限値、Dは上限値にあてはめられた。

1回刈り移植栽培では、イネ品種の黄熟期（9月下旬〜10月上旬）に各20株のイネおよびヒメタイヌピエを地上10cmの部位で刈取り、70℃で72時間通風乾燥し、乾物重を調査した。

2回刈り移植栽培では、1番草は異なる時期に刈取りを行い、2001年5月移植では7月16日（7/16刈区）、7月30日（7/30刈区）あるいは8月14日（8/14刈区）、同年6月移植では7月30日（7/30刈区）、8月14日（8/14刈区）あるいは8月28日（8/28刈区）、2002年5月移植では7月18日（7/18刈区）、7月31日（7/31刈区）あるいは8月14日（8/14刈区）、同年6月移植では8月20日（8/20刈区）にイネおよびヒメタイヌピエを地上10cmの部位で刈取り、乾物重を調査した。その後、刈り株から再生した株は、各種イネ品種の黄熟期（9月下旬〜10月上旬）に2回目の刈取り（以降、2番草と呼ぶ）を行い、各20株の乾物重を調査した。

また、ヒエ単株区では、同様の刈取り連続に1番草の刈取りを行い、1番草および2番草の乾物重を各20株調査した。

刈取りの1区間収穫は1.50m×1.75m、収穫は2とし、すべて手作業で行った。

結果

イネの生育経過

5月移植での出穂期は7月下旬（ヒノヒカリ）から8月中旬（Taporuri）、6月移植では8月下旬（ヒノヒカリ）から9月上旬（Taporuri）となった。また、耐倒伏性が弱い以下のTetepおよびTaporuriは、1回刈り栽培では、8月下旬以降に倒伏が見られ、その後Tetepでは全面倒伏した。
ヒメタイヌビエおよびイネの草丈の推移
混植区におけるヒメタイヌビエの草丈の推移は、混植したイネの品種間で異なり、お互いにモーれつ、Tetep, Taporuri＞スプライス＞西海204号、ヒノヒカリの順に草丈が大きかった（第1図）。ヒメタイヌビエの草丈は、ヒノヒカリとの混植では最終的にイネよりも高くなったが、TetepおよびTaporuriとの混植区ではイネより低く、ヒメタイヌビエは常にイネの草丈内にあり、モーれつ、スプライスおよび西海204号との混植区ではイネとほぼ同じ程度であった（第1図）。

イネ群落内の光強度の変化
イネ単植区の群落内の相対光量子密度の推移は、イネ品種間で大きく異なった。移植後の相対光量子密度の低下は、ヒノヒカリに比べてTetepおよびTaporuriで速く（第2図）、群落内の相対光量子密度が20%以下に達する日数は、5〜20日の差が認められた（第2図）。2回刈り栽培における1番草刈取り後の低下も同様であった（第3図）。これらの結果

月日
第1図 1回刈り移植栽培の混植区におけるヒメタイヌビエとイネの草丈の推移
□：ヒメタイヌビエ，○：イネ
1）縦棒は、標準偏差を示す。
第2図 イヌ单植区の地上20cmにおける群落内の相対光量子密度の経時的経過(2001年試験)

1）1個草刈り取り日は、相対光量子密度を100%として示した。
2）横軸は、移植日を基準とした。

第2表 1回刈り栽培においてイネ群落内の相対光量子密度が20%に達する移植後日数

<table>
<thead>
<tr>
<th>イネ品種</th>
<th>5月移植</th>
<th>6月移植</th>
<th>5月移植</th>
<th>6月移植</th>
</tr>
</thead>
<tbody>
<tr>
<td>モーれつ</td>
<td>60.1</td>
<td>48.4</td>
<td>62.6</td>
<td>36.1</td>
</tr>
<tr>
<td>Tetep</td>
<td>58.1</td>
<td>45.4</td>
<td>62.7</td>
<td>36.0</td>
</tr>
<tr>
<td>Taporuri</td>
<td>-</td>
<td>46.6</td>
<td>59.5</td>
<td>35.5</td>
</tr>
<tr>
<td>スプライス</td>
<td>56.1</td>
<td>52.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>西海204号</td>
<td>-</td>
<td>-</td>
<td>71.1</td>
<td>40.0</td>
</tr>
<tr>
<td>ヒノヒカリ</td>
<td>70.0</td>
<td>54.6</td>
<td>67.1</td>
<td>56.0</td>
</tr>
</tbody>
</table>

- は、試験なし。

に年間変動は認められなかった(データは省略)。移植後70日後の相対光量子密度がピーク散の分布は、第3図に示すごとく、草丈の高い品種は、高い層でも相対光量子密度の値は小さくなっていた(第3図)。

第3表 2回刈り栽培において再生株の群落内の相対光量子密度が50%に達する刈り取り後日数(2001年試験)

<table>
<thead>
<tr>
<th>イネ品種</th>
<th>5月移植</th>
<th>6月移植</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>モーれつ</td>
<td>10.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Tetep</td>
<td>12.2</td>
<td>10.1</td>
</tr>
<tr>
<td>Taporuri</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>スプライス</td>
<td>17.3</td>
<td>24.0</td>
</tr>
<tr>
<td>ヒノヒカリ</td>
<td>21.0</td>
<td>23.0</td>
</tr>
</tbody>
</table>

- は、試験なし。

イネ群落のイネの乾物重

イネ黄熟期におけるヒメタウシビエおよびイネの乾物重

イネ黄熟期におけるヒメタウシビエの乾物重は、イネの移植時期によって大きく異なり、5月移植に比べて6月移植で小さく、ヒエ单植区に対する混植区の減少率は6月移植で大きかった。また、混植したイネの品種間で差が認められ、TetepやTaporuri区で最も小さく、次いでモーれつおよびスプライス区の順であった(第4表)。

イネ群植区のイネの乾物重は、品種によって大きく異なり、モーれつおよびTaporuriはヒノヒカリに比べて大きかった(第5表)。混植区のイネの乾物重は、いずれの品種とも雑草によってイネ群植区に比べて減少したが、その減少の程度は、TetepおよびTaporuriでは他の品種に比べて小さかった。

移植料用イネ栽培では、ヒメタウシビエやイネと一意に収穫され、ホイールクロップサイレージ(WCS)の中に混入する。本試験では、実際にWCSの作成は行っていないが、イネ群植区ではイネの乾物重、混植区ではイネおよびヒメタウシビエの合計乾物重をWCS収量とすると、いずれの品種も混植区のWCS収量は、イネ群植区とほぼ同等かそれより大(対イネ群植区比:90.4〜120.5%)となっていた。また、ヒメタウシビエのWCS混入率はイネ品種によって異なり、ヒノヒカリでは2002年5月移植では40%
第4表 1回刈り移植栽培におけるヒメタイヌビエの乾物重に及ぼすイネ品種の影響

<table>
<thead>
<tr>
<th>混植したイネ品種</th>
<th>ヒメタイヌビエ乾物重(kg/㎡)</th>
<th>2001年</th>
<th>2002年</th>
<th>t検定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5月移植</td>
<td>6月移植</td>
<td>5月移植</td>
<td>6月移植</td>
</tr>
<tr>
<td>モーアツ</td>
<td>0.46 a</td>
<td>0.18 b</td>
<td>0.36 (21) c</td>
<td>0.05 (4) d</td>
</tr>
<tr>
<td>Tetep</td>
<td>0.08 b</td>
<td>0.05 b</td>
<td>0.17 (10) d</td>
<td>0.01 (1) e</td>
</tr>
<tr>
<td>Taporuri</td>
<td>-</td>
<td>-</td>
<td>0.18 (11) d</td>
<td>0.02 (1) f</td>
</tr>
<tr>
<td>スプライス</td>
<td>0.50 a</td>
<td>0.36 a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>西海204号</td>
<td>-</td>
<td>-</td>
<td>0.47 (28) c</td>
<td>0.09 (8) c</td>
</tr>
<tr>
<td>ヒノヒカリ</td>
<td>0.59 a</td>
<td>0.42 a</td>
<td>0.66 (39) b</td>
<td>0.25 (21) b</td>
</tr>
<tr>
<td>ヒエ単植</td>
<td>-</td>
<td>-</td>
<td>1.69 (100) a</td>
<td>1.18 (100) a</td>
</tr>
</tbody>
</table>

1) 調査は、イネ黄熟期に行った。
2) かっこ内の数値は、対ヒエ単植比(%)を示す
3) Tetep区およびTaporuri区は、8月下旬に倒伏した。
4) - は、調査なし。
5) t検定における**,**,nsは、それぞれ混植区間差が1％で有意、5％で有意、5％で有意でないことを示す。
6) 同一アルファベットは、各移植時期において品種の間にTukey法の5％水準で有意差が無いことを示す。

以上となったのに対し、TetepやTaporuriではどの移植時期でも10％以下であった（第4図）。

2回刈り移植栽培におけるヒメタイヌビエおよびイネの乾物重

1番草のヒメタイヌビエの乾物重は、刈取り時期が遅くなるに従って増加し、2番草では、刈取り時期が遅くなるに従って減少した（第6表）。1番草と2番草のヒメタイヌビエの合計乾物重は、異なる刈取り時期間での有意な差は認められなかったが、刈取り時期が遅くなりにしたがって減少する傾向が見られ、1回刈り栽培においてイネの倒伏による影響が見られたTetepおよびTaporuri区を除き、7月30日以降の刈取りでは、1回刈り栽培での乾物重よりも小さくなった（第4, 6表）。また、ヒメタイヌビエの1番草と2番草の合計乾物重、1回刈り栽培と同様に、5月移植に比べて6月移植で小さかった。

さらに、混植したイネの品種間で差が認められ、TetepまたはTaporuri区で最も小さく、次いでモーアツの順に小さかった（第6表）。
第5表 1回刈り移植栽培におけるイネ乾物重の品種間差

<table>
<thead>
<tr>
<th>品種</th>
<th>2001年試験</th>
<th>2002年試験</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5月移植</td>
<td>6月移植</td>
</tr>
<tr>
<td>モーれつ</td>
<td>1.76 a</td>
<td>1.59 ab</td>
</tr>
<tr>
<td></td>
<td>(81)</td>
<td>(89)</td>
</tr>
<tr>
<td>Tetep</td>
<td>1.63 ab</td>
<td>1.64 ab</td>
</tr>
<tr>
<td></td>
<td>(95)</td>
<td>(97)</td>
</tr>
<tr>
<td>Taporuri</td>
<td>-</td>
<td>1.77 a</td>
</tr>
<tr>
<td></td>
<td>(94)</td>
<td>(85)</td>
</tr>
<tr>
<td>スプライス</td>
<td>1.66 ab</td>
<td>1.18 c</td>
</tr>
<tr>
<td></td>
<td>(68)</td>
<td>(90)</td>
</tr>
<tr>
<td>西海204号</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒノヒカリ</td>
<td>1.46 b</td>
<td>1.32 bc</td>
</tr>
<tr>
<td></td>
<td>(71)</td>
<td>(68)</td>
</tr>
</tbody>
</table>

1) 調査は、イネ黄熟期に行った。
2) 数値は、イネ単葉区のイネの乾物重およびかっこ内は、混葉区におけるイネ乾物重の対イネ単葉区比率（％）を示す。
3) 1.5は、試験なし。
4) 同一アルファベットは、各移植時期において品種間の間に Tukey 法の 5％水準で有意差が無いことを示す。

イネ単葉区のイネの乾物重（1番草と2番草の合計値。以下、同様）では、品種間差が認められ、1回刈り栽培と同様に、モーれつおよび Taporuri ではヒノヒカリに比べて大きくかった（第7表）。また、異なる刈取り時間に有意な差が認められ、各品種、移植時期ともに、草番刈取り時期が7月下旬の場合に最も大きい傾向を示した。5月移植では2回刈り栽培によって乾物重が増加する品種（モーれつおよび Tetep）であったが（第5、7表）、6月移植ではいずれの品種も2回刈り栽培によって減少した。一方、混葉区のイネの乾物重は、いずれの品種とも雑草によってイネ単葉区に比べて減少したが、その減少の程度は、Tetep および Taporuri では他の品種に比べて小さかった。

2回刈り5月移植栽培では、1番草の刈取り時期によっては、混葉区のWCS収量は、ヒメダイヌビエの混入によりイネ単葉区と同等かそれより大となった。また、ヒメダイヌビエの混入率はイネ品種によって異なり、Tetepや Taporuri では約10％であった（第5図）。

一般に植物の競合で奪い合いをしている成長要素は、光・養分・水分であるとされている。しかし、水田ではイネと雑草の競合は、水分に対する競合は無視しうるので光と養分が主要因である。イネと雑草の競合関係において、雑草の窒素吸収力や窒素吸収量と乾物増加数の関係よりみた窒素の利用効率には草種間差があることが知られているが、雑草の全窒素吸収量とイネの地上部風乾重との関係は、雑草種にかかわらずほぼばらつきの直線上に乗ることが明らかになっており、窒素の競合はイネの雑草の内で大きな比重を占めていると考えられる。

また、収量構成要素から見たイネの雑草害は、コナギなどの草丈の低い雑草では、養分競合が生育初期から開始するため、糖度減に最も端的に現れ、糖度以外の収量構成要素（1穂穂数・登熟歩合・玄米千粒重）がそれを補償する方向に働くのに対し、タイヌビエなどの草丈の高い雑草では、草丈の低い雑草と同様に糖度減に最も端的に現れるが、生育後期の雑草による光の調節によりイネの糖度以外の収量構成要素や雑草の影響を受けることが明らかになっていっている。このように草丈の低いイネ科雑草では、光および栄養競合の結果が複雑に関与してイネに対して雑草害を与えているものと推察される。

イネが雑草から受ける害の側面からの研究の一例、イネとの競合による雑草の生育抑制の側面からは、水田で優占種となるイネ科雑草を対象に数多く行われており、イヌビエの乾物重と移植4週後のイネのLAI、草丈および乾物重との間に負の相関関係があること、タイヌビエの乾物重と移植40日後のイネの草冠長径、草冠短径および草高的積との間に有意な負の相関関係があること、コヒヌビエの乾物重と出芽60日後のイネのLAIおよび茎数との間に負の相関関係があることなど、タイヌビエに対する抑制力は、当地部の競合が地下部の競合より強く関与し、地下部の競合は窒素供給が強く制限される条件で重要な要因になることなどが報告されている。一般に相対照度などの植物群落内の光強度とその植物のLAIとの間には負の指数曲線で表される関係があることが知られており、これらの報告は、いずれもヒメ属一年生雑草に対する抑制力は、養分競合よりも光競合が大きく寄与することを示しているものと考えられ
2001年試験

2002年試験

第4図 1回刈り移植栽培におけるイネおよびヒメタイヌビエの合計乾物重

■イネ □ヒメタイヌビエ

1）Tetep および Taporuri は、8月下旬に倒伏したためヒメタイヌビエの生育が抑制された。

る。雑草物による雑草の生育抑制力は、作物間で大きな差異があることが知られている。トウモロコシやダズは、陸稲やラッカセイよりも雑草の生育抑制が大きく、かつ地表面の遮光力と遮光速度が速いことなどから、雑草物による雑草の生育抑制の要因は光であり、養分、水分などの要因は副要因であると考えられている。

ヒメタイヌビエを供試した本試験においても、イネ栽培区のヒメタイヌビエの乾物重は、群落内地上20cmの高さの相対光量子密度が20%以下に達する日数および移植40日後の地上20cmの高さの相対光量子密度との間に有意な一次の正の相関関係が認められた(第6図)。相対光量子密度が20%以下に達する日数および移植40日後の相対光量子密度は、群落内への迅速な光の遮蔽に関する指標であり、イネによるヒメタイヌビエの生育抑制の主要因は光競合であることが、本試験でもあらためて確認された。

水田では浸水条件下にあるため地表面上の光量子量の測定ではなく、地上20cmの高さで行った。著者らは、イネと雑草との競合に関し、草を同化する日印型イネの群落内でコナギの生育を解析して、移植約60日後のコナギの乾物重と移植約29～42日後の
第6表 2回刈り移植栽培におけるヒメイヌビエの乾物重に及ぼすイネ品種の影響

潤根したイネ品種	2001年試験								2002年試験			
	5月移植		6月移植						5月移植		6月移植	
	7/16刈区	7/30刈区	8/14刈区	7/30刈区	8/14刈区	8/28刈区	7/18刈区	7/31刈区	8/14刈区	8/20刈区		
1番草												
モーゲツ	0.13 (32)b	0.16 (22)b	0.19 (30)b	0.02 (174)b	0.11 (78)b	0.16 (41)b	0.10 (43)b	0.21 (42)bc	0.29 (21)bc	0.04 (9)c		
Tetep	0.06 (15)c	0.11 (15)b	0.14 (21)b	0.01 (111)c	0.06 (40)c	0.10 (26)b	0.09 (38)c	0.13 (27)c	0.10 (7)c	0.04 (10)c		
Taporuri	-	-	-	0.01 (92)c	0.06 (41)c	0.07 (18)b	0.11 (47)bc	0.17 (35)c	0.17 (12)c	0.02 (6)c		
スプライス	0.11 (28)bc	0.17 (23)b	0.20 (31)b	0.03 (246)a	0.17 (123)a	0.26 (70)a	-	-	-	-		
西海204号	-	-	-	-	-	-	-	-	-	-		
ヒノヒカリ	0.11 (27)c	0.17 (23)b	0.45 (70)a	0.02 (187)b	0.13 (90)ab	0.33 (89)a	0.15 (61)b	0.28 (57)bc	0.45 (32)bc	0.14 (32)b		
ヒエ単植	0.39 (100)a	0.71 (100)a	0.64 (100)a	0.01 (100)c	0.14 (100)b	0.38 (100)a	0.24 (100)a	0.49 (100)a	1.39 (100)a	0.43 (100)a		

2番草											
モーゲツ	0.40 a	0.15 bc	0.03 ab	0.20 b	0.06 b	0.01 b	0.16 (11)c	0.11 (17)c	0.03 (8)c	trace d	
Tetep	0.19 b	0.07 c	0.01 b	0.12 b	0.02 b	trace b	0.08 (6)d	0.07 (10)d	0.00 (0)d	trace d	
Taporuri	-	-	-	0.10 b	0.03 b	0.00 b	0.13 (9)c	0.05 (7)d	0.01 (2)d	trace d	
スプライス	0.64 a	0.29 a	0.04 a	0.35 a	0.18 a	0.04 a	-	-	-	-	
西海204号	-	-	-	-	-	-	-	-	-	-	
ヒノヒカリ	0.52 a	0.26 ab	0.06 a	0.36 a	0.16 a	0.05 a	0.41 (29)b	0.24 (37)b	0.07 (18)b	0.07 (28)b	
ヒエ単植	-	-	-	-	-	-	1.42 (100)a	0.64 (100)a	0.4 (100)a	0.26 (100)a	

1番草＋2番草											
モーゲツ	0.52	0.31	0.22	0.22	0.16	0.17	0.26 (16)	0.31 (28)	0.32 (18)	0.04 (5)	
Tetep	0.25	0.18	0.14	0.13	0.07	0.10	0.17 (11)	0.20 (17)	0.10 (5)	0.04 (6)	
Taporuri	-	-	-	0.12	0.08	0.07	0.25 (15)	0.22 (19)	0.18 (10)	0.02 (4)	
スプライス	0.75	0.46	0.24	0.38	0.36	0.31	-	-	-	-	
西海204号	-	-	-	-	-	-	-	-	-	-	
ヒノヒカリ	0.63	0.42	0.50	0.38	0.29	0.38	0.56 (34)	0.52 (46)	0.52 (29)	0.21 (31)	
ヒエ単植	-	-	-	-	-	-	1.66 (100)	1.13 (100)	1.80 (100)	0.69 (100)	

1) ）かっこ内の数値は、対ヒエ単植比(％)を示す
2) ）－は、試験もしくは調査なし。
3) ）1番草および2番草における同一アルファベットは、各区の品種の間にTukey法の5％水準で有意差が無いことを示す。
第7表 2回刈り移植栽培におけるイネ品種、移植時期および1番刈り取り時期がイネの合計乾物重に及ぼす影響

<table>
<thead>
<tr>
<th>イネ乾物重（kg/m²）</th>
<th>2001年試験</th>
<th>2002年試験</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5月移植</td>
<td>6月移植</td>
</tr>
<tr>
<td>イネ品種</td>
<td></td>
<td></td>
</tr>
<tr>
<td>モーサルツ</td>
<td>1.63 A a</td>
<td>1.78 B a</td>
</tr>
<tr>
<td>(82)</td>
<td>(73)</td>
<td>(87)</td>
</tr>
<tr>
<td>Tetep</td>
<td>1.79 A b</td>
<td>2.18 A a</td>
</tr>
<tr>
<td>(96)</td>
<td>(88)</td>
<td>(90)</td>
</tr>
<tr>
<td>Taporuri</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>スプライス1.22 B a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>西海204号</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒノヒカリ1.20 B a</td>
<td>1.31 C a</td>
<td>1.36 C a</td>
</tr>
<tr>
<td>(73)</td>
<td>(72)</td>
<td>(73)</td>
</tr>
</tbody>
</table>

1) 数値は、イネ単畑区のイネの乾物重を示す。
2) かっこ内は、個株区におけるイネ乾物重の対イネ単畑区比（%）を示す。
3) 数値は、1番および2番の合計值を示す。
4) -は、試験なし。
5) 大文字の同一アルファベットは、各処理区において品種の間にTukey法の5％水準で有意差が無いことを示す。
6) 小文字の同一アルファベットは、各品種において処理区の間にTukey法の5％水準で有意差が無いことを示す。

2001年試験

第5図 2回刈り移植栽培におけるイネおよびヒメタイヌビエの合計乾物重

1）TetepおよびTaporuriは、8月下旬に倒伏したためヒメタイヌビエの生育が抑制された。
2）2001年試験の横軸の①は7/16刈区、②は7/30刈区、③は8/14刈区を示す。
3）2002年試験の横軸の①は7/18刈区、②は7/31刈区、③は8/14刈区を示す。
4）数値は、1番および2番の合計値を示す。
地上20cmの高さの相対光量子密度の平均値との間に有意な一次の正の相関関係があることを明らかにした10。コナギのように草丈がイネより短く、常に葉がイネの草冠内に分布する草種では、地上20cmの高さの相対光量子密度の測定が雑草の生育を抑制する力を評価する指標となりうると考えられるが、草丈が大型で作物の同化部より高い位置に葉の分布を示す雑草との競合では、作物の平面的な広がりを定量的に把握する相対光量子密度だけでなく草丈といった立体的な広がりを定量的に把握する必要がある10。そのためイネと草丈が低いヒメイヌビエと競合している場合には、前述のようにイネの平面的な広がりと立体的な広がりを把握する指標として、LAI、乾物重などを用いられてきた。また、平面的な広がりと立体的な広がりを同時に表現する指標として、イネ株の草冠長径、草冠短径および草高の積も用いられていたが、この値は相対光量子密度と間に必ず有意な相関が認められている29。一般に、ヒメイヌビエと生長観が大きく、イネとの競合下では単株区よりも草丈が下くらることが知られており29,30,31。通常の品種（ヒノヒカリなど）の場合、ヒメイヌビエの草丈はイネよりも高くなくなった。しかし、モーセットやスプライスではほぼ同じ高さ、TetepやTaporuriでは生育期間を通じてヒメイヌビエの草丈はイネよりも低かった（第6図）。これは、本試験で用いたヒメイヌビエが、日本の短稈イネ品種の栽培環境に適応した結果、草丈における可塑性が比較的小さくなったことによるものであるか、あるいは、これらいネ品種の大きい草丈がヒメイヌビエの草丈におけ る可塑性の域を越えたものと推察される。このようなイネの草冠内にある条件ではヒメイヌビエとイネとの間の競合関係の解釈でも、コナギと同様に移植後40日後の相対光量子密度がイネの雑草抑制力を評価する指標として有効であることがあらためて確認された。イネの雑草抑制力に関わる形質、過去の研究29,30,31,32,33)と同様に生育初期から中期に測定した値が重要であることも確認された。しかし、TetepおよびTaporuri区とその他の品種区とで関係を示す関係式は異なり、前者の2品種ではイネの倒伏に よる影響が考えられた。

以上のように、ヒメイヌビエとイネとの競合であ る、常にイネの草冠内にあるコナギの場合と同様に グループ内地上20cmの部位の相対光量子密度を測定す ることによってイネ品種の雑草抑制力を評価するこ とが可能と考えられた。これによれば、本試験の供試品種では、Tetep、Taporuri＞モーセット＞スプラ
日本における雑草除草栽培の研究では、雑草、水稲、及び稲作によって影響されることが報告されている。これにより、雑草の栄養価は、TN 含量がイネと同様とする結果が報告されているが、WCS に混入した場合の雑草抑制の影響については不明な点も多いこと、また雑草抑制の効果は短期間であることが示され、面 WCS への雑草の混入率は可能な限り低くすることが肝要であろう。本試験では、雑草が高くイネ群落内の光量子密度を速やかに低下させる雑草を用いて 2 回刈り移動栽培することで、WCS へのヒメタイヌピエの混入率は 10% 程度まで低下させることができた（第 5、6 項）。今後は、雑草の除草栽培における雑草抑制法の確立のため、雑草の草種、発生密度などのイネ栽培法などの変動要因について検討する必要がある。

謝辞
本稿の取材にあたり、懇切なご指導、ご助言をいただいた佐賀大学教授山本秀次郎博士、また研究補助として本研究にご協力いただいている独立行政法人農業・食品系特定産業技術研究機構九州沖縄農業研究センター企画調整部業務第 2 科の坂本和彦氏および同センター水田作研究部雑草制御研究室の田中ヒトミ氏および樋口一美氏に深く感謝いたします。またイネ種子を提供してくださった同センター水田作研究部雑草制御研究室、栽培生理研究室および畜産飼料作研究部飼料生産研究室に深く感謝いたします。

引用文献
1）千坂英雄 1966．水稲と雑草の競争．雑草研究 5，16-22．
3）福見義平・熊井清雄・丹比邦保 1982．登熟ステージ、于乾処理及び糖皮剤添加が水稻ホールクロップの品質並びに雑草抑制に及ぼす影響．畜産の研究 36 (2), 290-292.
4）林義朗・大橋和夫・加藤国雄・生雲喜久 1989．水稲「ホシユグウ」ホールクロップ栽培の施肥処理及び育成に対する除草効果．中国農業研究 5, 35-44.
5）飯田克実・高橋保夫 1976．イネの青刈り飼料栽培に関する研究．農業研究 24, 57-93.
6）Johnson D. E., M. Dingkuhn, M. P. Jones and M.

7) 植木信幸・中村拓 1984. 水田雑草の薬分収取特性の草種間差 第1報 混植による窒素吸収力の推定. 雑草研究 29 (2), 147-152.

8) 小荒井晃・児嶋清・大段秀記・住吉正・服部育男・小林良次・佐藤健次 2002. 飼料用イネ栽培におけるメタヌシビエの生育. 雑草研究 47 (別) 228-229.

11) 小林良次・佐藤健次・服部育男 2002. 滞水直播水田における播種様式と播種後の水管理が飼料イネの収量性に及ぼす影響. 九農研 64, 130.

15) 野田昌治・藤田美一・木村健治 1975. 飼料用稲の品種と栽培に関する研究. 北陸農試報 17, 111-128.

16) 野口勝可 1983. 畑作物と雑草の光競合に関する生態学的研究. 農研センター研究 1, 37-103.

19) 佐藤純一 2000. 飼料イネによる水田の活用と耕薬連携. 研究ジャーナル 23 (7), 24-29.

25) 橋雅明・渡辺寛明 2001. 空間占有体積による水稻品種のタイヌビエ抑制力評価法 第1報 空間占有体積測定法. 雑草研究 46 (別), 84-95.

26) 高橋保夫・飯田克実 1965. イネおよびノビエの育利飼料化に関する研究 第2報 畑および滞水田におけるイネおよびノビエの育利専用栽培. 日作紀 33, 242-246.

Effect of rice cultivars on the growth of *Echinochloa crus-galli* (L.) Beauv. var. *formosensis* Ohwi in whole-crop silage rice cultivation

Akira Koarai,* Tadashi Sumiyoshi,* Kiyoshi Kojima*** and Hideki Ohdan*

Summary

The growth of *Echinochloa crus-galli* (L.) Beauv. var. *formosensis* Ohwi was investigated for one- and two-cut whole-crop silage rice cultivation using different rice cultivars in 2001 and 2002. Tetep and Taporuri canopies were always higher than that of *E. crus-galli* var. *formosensis*. Thus, the relative photosynthetic photon flux density in rice canopies, calculated as the relative value between photosynthetic photon flux density in the rice canopy and that of the paddy levee surface, quickly decreased during Tetep and Taporuri growth or regrowth periods.

There were positive relationships between *E. crus-galli* var. *formosensis* shoot dry weight and the relative photosynthetic photon flux density below the canopy at 20 cm from the ground at 40 days after transplanting rice or the number of days after transplanting rice when relative photosynthetic photon flux densities were less than 20%. The dry weights of *E. crus-galli* var. *formosensis* planted with Tetep and Taporuri were less than those planted with other cultivars in one-cut rice cultivation. In addition, the weed losses of the cultivars themselves were smaller than for other cultivars. The dry weights of *E. crus-galli* var. *formosensis* and rice in two-cut rice cultivation were similar to those in one-cut rice cultivation, and those of *E. crus-galli* var. *formosensis* were less in two-cut rice cultivation than in one-cut rice cultivation.

E. crus-galli var. *formosensis* contaminated more than 40% of the Hinohikari whole-crop silage, but less than 10% contamination was found in Tetep or Taporuri whole-crop silage.

Keywords: rice (*Oryza sativa* L.), *Echinochloa crus-galli* (L.) Beauv. var. *formosensis* Ohwi, whole-crop silage, two-cut rice cultivation, light competitive ability