Sedative Effect of *Centranthus longiflorus* ssp. *longiflorus* in Rats and the Influence of Adrenalectomy on its Effect

Halis SULEYMAN, Zuhal GUVENALP, Mehmet KIZILKAYA, and L. Omur DEMIREZER

Department of Pharmacology, Faculty of Medicine, Ataturk University, Campus 25240, Erzurum, Turkey, Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Campus 25240, Erzurum, Turkey, Department of Anesthesiology, Faculty of Medicine, Ataturk University, Campus 25240, Erzurum, Turkey, and Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, SÜhhiye 06100, Ankara, Turkey

(Received February 13, 2007; Accepted March 20, 2007)

Sedative effect of the aqueous extract of *Centranthus longiflorus* ssp. *longiflorus* (Cle-1) on intact and adrenalectomized rats was investigated using a thiopental sleeping test to clarify the relationship of this effect on adrenal gland hormones, particularly glucocorticoids. Adrenal gland hormones were found to play an important role in inhibiting the sedative effect of the investigated drugs. It is clear, however, that these hormones are not glucocorticoids. Glucocorticoids were not responsible for shortening the sleep period.

Key words—— *Centranthus longiflorus* ssp. *longiflorus*; sedative effect; rat; thiopental sodium

INTRODUCTION

The genus *Centranthus* (Valerianaceae) is represented by three species in the flora of Turkey. Pharmacological studies were undertaken as long as ago as 1907 which demonstrated experimentally that *V. officinalis* extracts possessed a sedative effect. Many subsequent studies have confirmed these early findings but the identity of the compounds responsible has been a matter of controversy which has still not been fully resolved. Aqueous preparations of valerians which belongs to the same family as *Centranthus* have been used as a major sedative in phytomedicine. However, the biochemical mechanism of *Valeriana officinalis* extract in the nervous system is still unknown. Iridoids and valepotriats are among the constituents of the aqueous extract of *Valeriana officinalis* and are thought to be responsible for the central nervous depressant activity associated with these extracts. *Centranthus longiflorus* ssp. *longiflorus* is a perennial herb and is traditionally used as a sedative. The chemical constituents of this plant have been reported in our previous study. Iridoids and valepotriats were isolated as well as some flavonoid and triterpene structures of other compounds.

The goal of this study has to investigate the sedative effect of *Centranthus longiflorus* ssp. *longiflorus* on intact and adrenalectomized rats based on the relationship of this effect on adrenal gland hormones, particularly glucocorticoids.

MATERIALS AND METHODS

Plant Material The aerial parts of *Centranthus longiflorus* ssp. *longiflorus* were collected in July 1999 from Erzurum, eastern Anatolia, in the vicinity of Ispir. A voucher specimen is deposited in the Herbarium of Hacettepe University, Faculty of Pharmacy (HUEF 99042) Ankara/Turkey.

Preparation of the Extract The powdered herb of *Centranthus longiflorus* ssp. *longiflorus* was extracted with methanol at 40°C under reflux for 4 h. The solvent was filtered and evaporated in a vacuum using a rotary evaporator. The residue was dissolved in water and partitioned with petroleum ether. The water extract was evaporated and the final residue was stored after lyophylization (Cle-1).

Animals 54 adult male Wistar albino rats weighing between 175–185 g from the experimental animal laboratory of Atatürk University were used. Animals were provided with standard laboratory diet, and were assigned to groups, each consisting of 6 animals.

Thiopental Sodium Sleeping Test on Intact Rats The aqueous extract of *Centranthus longiflorus* ssp. *longiflorus* (Cle-1) was given at doses of 100 and 200 mg/kg by oral gavage. Another group of animals was
treated with diazepam for comparison. Diazepam was
given at a dose of 5 mg/kg by gavage. A further
group of animals (control group) received the same
volume of distilled water. One hour after administra-
tion of the test substances and distilled water, the rats
received 25 mg/kg body weight thiopental sodium by
intrapertioneal injection.

After thiopental sodium administration the begin-
nung of sleeping time was taken to be when the animal
assumed a supine position. When the animals turned
into a quadruped prone position this was used as the
end-point of sleeping time. Sleeping time was meas-
ured with a stop-watch in minutes. The effect of Cle-1
on sleeping time was compared to that of the control
and diazepam groups.

**Thiopental Sodium Sleeping Test on Adrena-
lectomized Rats** In this series of our experiments,
the sedative effects of Cle-1 were investigated on
adrenalectomized rats. The adrenal glands were re-
moved from rats anesthetized with 25 mg/kg
ketamine.10 After operation, the rats were nourished
with 1% NaCl and pellet fodder for a period of 7
days. After the eighth day, 100 mg/kg of Cle-1, 5 mg
/kg of prednisolone + 100 mg/kg of Cle-1, 5 mg/kg
of diazepam, 5 mg/kg of prednisolone + 5 mg/kg of
diazepam were administered by oral gavage. The con-
trol group was administered distilled water. One hour
after administration of the test substances and dis-
tilled water, the rats received 25 mg/kg body weight
thiopental sodium by intraperitoneal injection. The
effect of Cle-1 on sleeping time was compared in that
of the control and diazepam groups.

Statistical Analysis The Tukey test one-way
analysis of variance in conjunction with a Student’s
†-test for independent samples was performed for
statistical analysis and a probability level of \(p < 0.05\)
was chosen as the criterion of statistical significance.

Values were reported as mean plus or minus stand-
ard error of mean (±SE).

RESULT AND DISCUSSION

The central nervous system has two types of neu-
romediators. Excitatory neuromediators (e.g.,
dopamine, noradrenaline, serotonin, acetylcholine) act
as stimulators, and inhibitory neuromediators (e.g.,
GABA, adenosine, glycine) cause sedation. It is well
known that the drugs which increase the level of
GABA, adenosine and other inhibitory neuromedia-
tors produced the sedative effects.4,9,10 Valeric acid
causes inhibition of an enzyme system which degrade
GABA. GABA level increases and a sedative effect
occurs. Centranthus also contains valerianic acid. In
our previous study the sedative effect of Centranthus
longiflorus ssp. longiflorus was investigated on mouse.11

In this study, the effect of Cle-1 and diazepam were
investigated compared for the increase of thiopenthal
sodium sleep period in the intact and adrenalecto-
tomized rats.

Many pharmacological test method are available to
determine the sedative effect of substances. Lengthen-
ing of the thiopenthal sodium sleep test is frequently
used to evaluate effect. As is shown in Table 1, the
thiopenthal sodium sleep period was found to be 84 ±
37 min for Cle-1 (100 mg/kg) and 88.4 ± 40 min for
Cle-1 (200 mg/kg) when administered to intact rats,
respectively. Sleep period for diazepam is 155 ± 58
min and for control 16.2 ± 14.7 min. One hundred mg
/kg of both Cle-1 and diazepam significantly
prolonged thiopenthal sodium induced sleeping times
in intact rats. One hundred mg/kg of Cle-1 thus in-
creased the sleep period of thiopenthal sodium 5.2
times more than control, but the effect of a double
doze of Cle-1 (200 mg/kg) was found statistically
meaningless. On the other hand, diazepam showed
significant activity and increased the sleep period 9.5
times more than control. In our previous study on
Cle-1, the active dose was found to be 100 mg/kg, but
in the same study diazepam (5 mg/kg) showed lower
activity than 100 and 200 mg/kg of Cle-1. Conse-
quently, it can be said that Cle-1 showed sedative ac-
tivity similar to diazepam and the latent period in-
creased the sleep period.11 The case in adrenalecto-
tomized rats is different (Table 2). The thiopenthal
sodium sleep period was 422 ± 76 min and 212 ± 87
min for 100 mg/kg of Cle-1 and 5 mg/kg of diazepam
administered rats, respectively. An interesting result
was found from the control group. The thiopenthal

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Animals</th>
<th>Dose (mg/kg)</th>
<th>Latent period (min)</th>
<th>Sleeping time (min)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cle-1</td>
<td>6</td>
<td>100</td>
<td>2.8</td>
<td>84.3 ± 37</td>
<td><0.05</td>
</tr>
<tr>
<td>Cle-1</td>
<td>6</td>
<td>200</td>
<td>2.4</td>
<td>88.4 ± 40</td>
<td><0.05</td>
</tr>
<tr>
<td>Diazepam</td>
<td>6</td>
<td>5</td>
<td>3.1</td>
<td>155 ± 58</td>
<td><0.05</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>—</td>
<td>3.0</td>
<td>16.2 ± 14.7</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 2. The Effect of Cle-1 and Diazepam on Thiopenthal Sleep Period in Adrenalectomized Rats

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Animals</th>
<th>Dose mg/kg</th>
<th>Latent period (min)</th>
<th>Sleeping time (min)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cle-1</td>
<td>1</td>
<td>100</td>
<td>2</td>
<td>422±76</td>
<td>>0.05</td>
</tr>
<tr>
<td>Cle-1 +</td>
<td>1</td>
<td>100</td>
<td>2</td>
<td>399±125</td>
<td><0.05</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diazepam</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>212±87</td>
<td><0.05</td>
</tr>
<tr>
<td>Diazepam +</td>
<td>1</td>
<td>5</td>
<td>1.8</td>
<td>204±68</td>
<td><0.05</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td></td>
<td></td>
<td>523±40.7</td>
<td></td>
</tr>
</tbody>
</table>

sodium sleep period of the control group was 523±40.7 min. Comparison of the results of the control group of adrenalectomized rats and intact rats showed that the sleep period of the former was 32 times longer than that of the latter. Similar results are valid for Cle-1. One hundred mg/kg of Cle-1 increased the sleep period in adrenalectomized rats 5 times more than intact rats. Diazepam and Cle-1 potentiated the sedative effect of thiopenthal sodium in intact rats but antagonized it in adrenalectomized rats.

In other words, the sedative effect of Cle-1 and diazepam can change with the presence of adrenal gland hormones. Individual differences affect the results.12

Variability of the sedative effect of these drugs in intact and adrenalectomized rats means that adrenal gland hormones play an important role inhibiting the effect. It is clear, however, that these hormones are not glucocorticoids. Glucocorticoids were not responsible for decreasing the sleep period. There was no statistical significance between the Cle-1 administered groups and the groups given Cle-1 plus prednisolone. A similar effect was observed between diazepam and diazepam plus prednisolone. The mechanism of the sedative effect of Cle-1 and diazepam in adrenalectomized rats require more experimental studies.

REFERENCES