YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
誌上シンポジウム
酸化ストレス産物アクロレインの見過ごされていた反応性:インビボ検出から酸化ストレスへの寄与,及び生体内制御機構の解明へ
Ambara R. Pradipta田中 克典
著者情報
ジャーナル フリー

2017 年 137 巻 3 号 p. 301-306

詳細
抄録

 Acrolein, a highly toxic α, β-unsaturated aldehyde, occurs as pollutant in the environment (e.g., tobacco smoke and exhaust gas) and is ubiquitously generated in biosystems (e.g., the lipid peroxidation process and metabolism of polyamine or amino acids). High accumulation of acrolein in biosystems is often linked pathologically with several oxidative stress-related diseases, including cancer and Alzheimer's disease. Accordingly, acrolein holds great potential as a key biomarker in oxidative stress-related diseases, and direct measurement of acrolein in biological samples is important to provide information for diagnostic and therapeutic purposes. Recently, we have serendipitously discovered the unrecognized reactivity of phenyl azide to acrolein. Phenyl azide can rapidly and selectively react with acrolein in a “click” manner to provide 4-formyl-1,2,3-triazoline through 1,3-dipolar cycloaddition. We have successfully utilized the acrolein-azide click reaction as a simple but robust method for detecting and visualizing acrolein generated by live cells in the context of oxidative stress processes. In addition, we also serendipitously discovered novel cycloaddition reactions of N-alkyl-α,β-unsaturated imines derived from acrolein and biogenic amines (e.g., polyamines, norepinephrine, and sphingosine), to yield 8-membered cyclic compounds. We then examined the biological functions of the cyclic products and revealed for the first time their roles in the oxidative stress mechanism and inhibition of amyloid β(1-40) fibrillization.

著者関連情報
© 2017 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top