総 説

各種結合の選択的開裂に有用なハード酸-ソフト求核剤組合せ系
新反応剤の開発研究

野出 学
京都大学化学研究所, 〒611 宇治市五ヶ庄

Development of New Combination Systems Consisting of a Hard Acid and a Soft Nucleophile for the Selective Bond Cleavage of a Various Bond

MANABU NODE
Institute for Chemical Research, Kyoto University,
Uji, Kyoto, 611, Japan

A chemical bond has the hard-soft dissymmetry as well as the charge dissymmetry. Thus, a combination system of a hard acid and a soft nucleophile is able to cleave the bond which consists of a hard base and a soft acid. Recently, the author has developed a number of combination systems for the cleavage reactions of various bonds. This article describes the cleavage reaction of C-O, C-halogen, C-NO₂, C-S, and C-C bonds with a combination system consisting of a hard Lewis acid and a soft nucleophile.

Keywords——hard acid; soft nucleophile; combination system; bond cleavage; selective dealkylation; carbon-oxygen bond; reductive dehalogenation; reductive denitration; Diels-Alder reaction

1. はじめに

Hard (硬い) 及び soft (軟い) という言葉は 1963 年 Pearson により初めて化学の世界で導入され、種々の酸-塩基を分類するために用いられてきた。1) 「ハード酸はハード塩基と、ソフト酸はソフト塩基と結合し易い」というハード-ソフト酸-塩基則 (HSAB 则) はその初期においては主に無機化学の領域で利用されるのみであったが、1967 年有機化学にも拡張されるとこの考え方は広く一般に受け入れられるようになった。2) HSAB 则は有機化学者にとって化学反応の位置選択性の説明や化学反応の予測等に特に有用であり、著者もこの HSAB 则を積極的にとり入れた結合開裂反応を研究することにした。

化学結合には一般的に電荷の偏りがあることから化学結合は Lewis 酸と Lewis 塩基とから構成されていると考えることができる。これにハード-ソフトの偏りを考慮すると化学結合はハード塩基とソフト酸から構成されているもの (type A) とソフト塩基とハード酸から構成されているもの (type B) とに大別できる。この type A の組合せに着目すると炭素-酸素、炭素-ハロゲン、炭素-窒素等の組合せ明かにこの type の組合せがなる結合があり、また炭素-炭素、炭素-硫黄等の結合においても階級位に相当した官能基を導入すれば type A と同等な組合せができる。著者は Chart 1 に示す Saville 则3) に基づいた反応表示による type A の結合開裂反応の研究を実施し、炭素-酸素結合開裂反応を始めとして種々の結合開裂反応を開発することができた。以下に著者の研究を中心として具体例を概説する。

2. ハード酸-ソフト求核剤組合せ系の開発

著者らはジペレリン類の全合成を 10 年程度に報告4) したが、この合成研究の際にニッケルアルコールの保護基と本総説は、昭和 60 年度日本薬学会奨励賞の受賞業績を中心に記述したものである。
して酸・塩基条件や酸化-還元条件にも安定なものを選ぶ必要があった。この条件に最も適した保護基はメチル基であると考えられるが、このメチルエーテルの脱メチル化反応で合成的に利用し得るもののは当時見出されてなかった。そこで著者はこの脱メチル化剤として \(BF_3\cdot OEt_2\) -RSH 組合せ系反応剤を最初に開発した。この反応剤は二級アルコールのメチルエーテルの脱メチル化剤として合成研究に最初に用いられたものであり、ジペリン類の全合成の際に効果的に利用された。この脱メチル化反応の機構は Fig. 1 に示されるようにエーテル酸素 (ハード塩基) にハード酸 (BF\(_3\)) の配位と、メチル炭素 (ソフト酸) にソフト求核剤 (チオールの硫黄原子) が攻撃する push-pull 機構で進行していると考えられる。すなわち、この反応はハード-ハード、ソフト-ソフトの親和性に基づきした反応である。

従来の脱メチル化剤による反応様式は type I と II に分類でき、新反応剤による反応様式は type III のように表される。これら 3 種の脱メチル化様式の特徴を比較すると以下のようになる。

type I

\[
R-O-CH_3 + Y^- \rightarrow R-O^- + CH_3Y
\]

\[Y^- = RS^-; I^-; RO^-; etc.\]

type II

\[
R-O-CH_3 + Z-Y \rightarrow R-O-CH_3 + Y^- \rightarrow R-O-Z + CH_3Y
\]

\[Z-Y = Br_2; H-I; CH_3CO-Br; etc.\]

type III

\[
R-O-CH_3 + Z \rightarrow R-O-CH_3 + Y^- \rightarrow R-O-Z^- + CH_3Y^+
\]

Type I の反応では \(Y^- \) の求核攻撃のみが反応の進行を左右するため基質の O-CH\(_3\) 結合の分権が特に重要である。すなわち芳香族メチルエーテルやメチルエステルのように R としてもとても電子吸引力のあるものであるメチル基に有効である。

Type II の反応においては基質の分権は特別必要でなく、\(Z^- \) による O-CH\(_3\) 結合の活性化と \(Y^- \) (求核剤)による求核力により反応が誘起される。このため反応は脂肪族メチルエーテルに対しても活性となる。しかしながら基質 (R-O-CH\(_3\)) の R が二級及び三級の炭素になると酸 (例えば \(BF_3\)) から脱離する求核種がメチル炭素に攻撃する以前に R-O 結合が S\(_0\)1 的に開裂する傾向があり一般的にそれらの脱メチル化には適用できない。

一方 type III の反応では酸による pulling factor と求核剤による pushing factor の両者が同時に存在しているため基質の R が二級炭素の場合でも R-O 結合の開裂は起こらず、立体障害のより少ないメチル基側での結合開裂が優先して起こる。また type II の反応では求核種 (Y-) は反応した基質と等モルしか形成されないのに対し、type III の反応では酸と求核剤の基質に対する比率を自由に調節できる。このため基質に対する反応性をコントロールする上で都合がよい。

このような考察から type III の脱メチル化様式は従来のものより優れていると考えられる。著者らは以後 type III の反応剤を "ハード酸-ソフト求核剤組合せ系反応剤" と称し、後述のように種々の組合せ反応剤を開発してきた。このハード酸としては取り扱いの簡便な Lewis 酸 (BF\(_3\)-OEt\(_2\), AlCl\(_3\), AlBr\(_3\), etc.) を選び、ソフト求核剤としては毒性の少ない硫黄原子 (RSSR, RSH) やヨウ素の求核種を選んで使用した。これらの組合せ反応剤は type A の結合様式をもつ基質に対してそれぞれ反応性が異なることから目的に応じてそれらを使い分けることができる。

矢崎らも type III 型の反応剤 (MeSO\(_2\)H-methionine) を同時期に開発し、その後改良が加えられプチド合成における保護基の脱保護法としてこの種の反応剤は有用であることが示された。Table I には著者以外の研究者によって近年開発された type III 型の反応剤とその用途を示した。

同じ頃、Jung や Olah らは type II 型の有用な反応剤 (Me\(_3\)Si) を開発し、以後この型の反応剤も多数報
の組合せ系は脂肪族アルコールのメチルエーテルやペンジルエーテルの脱メチル化9)や脱ペンジル化92)に有効である。この脱アルキル化反応はFig. 1に示されるpush-pull機構で進行するため二級アルコールの立体配位置は完全に保持される。

脱メチル化反応においては、脂肪族メチルエーテルと芳香族メチルエーテルの間に大きな反応性の差があり、Chart 2中の式(1)に示されるように脂肪族メチルエーテルを選択的に脱メチル化することができる。これは基質のメチルエーテルとBF₃・OEt₂との間の平衡(式2,3)に基づくと考えられる。すなわち、芳香族メチルエーテルのエーテル酸素は脂肪族のものに比べて残位エネルギーは低く(式3)の平衡は左に大きく傾いている。このため芳香

图表1, 合成システムの難酸と柔核な使用

<table>
<thead>
<tr>
<th>Combination systems</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeSO₃H-methionine³⁹</td>
<td>Dealkylation of ArO-R (R=Me, Et)</td>
</tr>
<tr>
<td>MeSO₃H-Me₂S³⁷</td>
<td>Dealkylation of alkylmethyl phosphate</td>
</tr>
<tr>
<td>RSO₂H-PhSMe (R=Me, Et, CF₃)²⁸</td>
<td>Deblocking in peptide chemistry</td>
</tr>
<tr>
<td>CF₃CO₂H-MeSR (R=Me, Ph)³⁹</td>
<td>Removal of MPS, Z group of amino group</td>
</tr>
<tr>
<td>HF-Me₂S²⁰</td>
<td>Debenzylation of benzyl ester</td>
</tr>
<tr>
<td>H₂SO₄-NaI³¹</td>
<td>Dehalogenation of α-haloketone</td>
</tr>
<tr>
<td>PhSiMe₃-Br²²</td>
<td>Dealkylation of ester, ether</td>
</tr>
<tr>
<td>Me₃SiCl-NaI³⁴</td>
<td>Cleavage of ester, lactone, ether, acetal, dialkylphosphate, carbamate</td>
</tr>
<tr>
<td>SiCl₄-NaI³⁴</td>
<td>Regioselective ether cleavage</td>
</tr>
<tr>
<td>MeSiCl₃-NaI³⁵</td>
<td>Dealkylation of ether</td>
</tr>
<tr>
<td>BBB₃-NaI³⁶</td>
<td>Cleavage of ether, lactone</td>
</tr>
<tr>
<td>BBB₃-Me₂S²⁷</td>
<td>Demethylation of ArO-Me</td>
</tr>
<tr>
<td>BF₃·OEt₂-n-Bu₄N⁺¹⁻²⁹</td>
<td>Regioselective ether cleavage</td>
</tr>
<tr>
<td>BF₃·OEt₂-NaI³⁹</td>
<td>Cleavage of allyl alcohol</td>
</tr>
<tr>
<td>RCOC₁-NaI³⁰</td>
<td>Ring opening of cyclic ether</td>
</tr>
</tbody>
</table>

3. 炭素-酸素結合開裂反応

水酸基やカルボキシル基の保護に用いられるアルキル基はその安定性の面で有機合成上有力な保護基である。これらの開開裂にS₄₂型の脱アルキル化が要求されることが多く、特に水酸基の立体配位置は完全に保持されていることが要求される。また環境状態やラクトンのS₄₂型開裂反応により形成される化合物は有機合成上有力な合成中間体として利用できる。これらの反応は従来type I と IIの方法で実施されてきたが基質の制限やS₄₂型反応が混じる場合もあり、それぞれ難点があった。以下に著者らが考案したtype IIIによる選択的脱アルキル化反応や位置選択的開裂反応を紹介する。

3-1. BF₃·OEt₂-(CH₂SH)₉系⁶,⁵¹ この組合せ系は脂肪族アルコールのメチルエーテルやペンジルエーテルの脱メチル化⁹)や脱ペンジル化⁵)に有効である。この脱アルキル化反応はFig. 1に示されるpush-pull機構で進行するため二級アルコールの立体配位置は完全に保持される。

脱メチル化反応においては、脂肪族メチルエーテルと芳香族メチルエーテルの間に大きな反応性の差があり、Chart 2中的式(1)に示されるように脂肪族メチルエーテルを選択的に脱メチル化することができる。これは基質のメチルエーテルとBF₃·OEt₂との間の平衡(式2,3)に基づくと考えられる。すなわち、芳香族メチルエーテルのエーテル酸素は脂肪族のものに比べて残位エネルギーは低く(式3)の平衡は左に大きく傾いている。このため芳香

族と脂肪族の間にはBF₃により形成されるoxonium ionの濃度に大きな差が生じ、これが両者の反応性に影響していると考えられる。

著者らはジェリリン類の全合成研究⁵)でこの組合せ反応を最初に使用(Chart 3)したが、Griecoら⁸)はこの
反応剤を少し modify した系を用いて quassin 全合成を達成している。

3-2. BF₃-OEt₂-EtSH 系

Ethanethiol は前述の ethanedithiol よりも求核能が劣るため脱メチル化には適しないが、脱ベンジル化は容易であるためフェノール性及びアルコール性水酸基のベンジルエーテルの脱ベンジル化に有効である。本反応剤による脱ベンジル化は Table II に示されるように芳香族の方が脂肪族より短時間で完結する。この現象は前述の脱メチル化とは逆であり、このことは脱ベンジル化においては pulling factor よりも pushing factor の方がより重要なものであることを示唆している。

Table II. Debenzylation of Aromatic and Aliphatic Benzyl Ethers

<table>
<thead>
<tr>
<th>R = CH₂Ph</th>
<th>BF₃-OEt₂ in EtSH</th>
<th>R = H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.8h) 92%</td>
<td>(1h) 93%</td>
</tr>
<tr>
<td></td>
<td>(1h) 92%</td>
<td>(1h) 90%</td>
</tr>
<tr>
<td></td>
<td>(0.5h) 94%</td>
<td></td>
</tr>
</tbody>
</table>

Dichloromethane was used as cosolvent.

Chart 4 には従来の方法では脱ベンジル化できない化合物での反応例を示しているが、これは本反応剤の合成的有用性を示すものである。本反応剤は Overman による perhydrogphyrotoxin 全合成39)や大石らによる caryophyline 全合成40)で使用され好結果を与えている。

<table>
<thead>
<tr>
<th></th>
<th>BF₃-OEt₂(8)</th>
<th>EtSH·CH₂Cl₂</th>
<th>r.t. 2 h 94%</th>
</tr>
</thead>
</table>

Chart 4

3-3. AlCl₃·CH₂CN·NaI 系

この組合せ系は前述の BF₃-OEt₂ を使用した組合せ系より反応性が高く、比較的短時間でベンジルエーテル、ベンジルエステルの脱ベンジル化37)や脂肪族メチルエーテルの脱メチル
図5

選擇的脱甲基化

図6

化学反応が室温で完結する。還流条件を用いれば芳香族メチルエーテルも容易に脱メチル化することができる（図5）。

本反応剤の特徴は前述のチオールを用いた反応剤で副反応を起こすMichael acceptorやカルボニル基を有する化合物においても副反応がほとんど観察されないことと図6に示されているように分子内に類似したアル
CH₃CN + AlCl₃ → CH₃C≡N−AlCl₃
R−O−Me + CH₃C≡N−AlCl₃ → CH₃CN + R−O−Me
AlCl₃
R−O−Me
AlCl₃ + I− → R−O−AlCl₃ + MeI

Chart 7

キルエーテルやエステルをもつ化合物の選択的脱アルキル化が可能なことである (Chart 中の矢印は脱アルキル化の位置を示す). これらの選択性は前述の BF₃−OEt₂ の Et₂O の役割を CH₃CN が演じているためであると考えられ、本組合せ系での反応は Chart 7 に示される機構で進行すると予想される。

本反応剤は環状エーテルに対しても活性を示すが、特に 5 員環エーテルには高い反応性をもつ iodoalcohol を収率よく与える。Table III には 2 位にアルキル置換基をもつ tetrahydropyran に対する位置選択的開環反応を示す。この反応で形成される iodoalcohol のヨウ素を還元すれば 5 員環エーテルから主要アルコールへの変換ができる。また脱 HI によりホモアリールアルコール体への変換ができる (Chart 8).

2-置換 tetrahydropyran 類は相当する一級アルコールの四酢酸鉛酸化により容易に合成できることから上記変換反応は一級アルコールからの変換を意味する。著者らはこの変換反応を応用しカウレンの位置選択的水素基化を検討した。この結果、Chart 9 に示されるように (−) カウレンから導き出したカウラン (1), (2) より 12 位及び 14 位へ位置選択的に水素基を導入することができた。
3-4. **Alkyls-RSH** 系**43**-**41** 前述までの Lewis 酸の complex (BF₃·OEt₂, AlCl₃·CH₂CN) を用いた組合せ系は C-O 結合開裂反応の選択性をもたらす意味では非常に有効であったが、フェノール性のアルキルエステル、エステル、ラクトンなどの結合開裂にはほとんど不活性であり、さらに強力な組合せ反応剤を発生する必要があった。この目的で開発されたのがこの組合せ系である。種々の Lewis 酸による活性の順序は AlBr₃ > AlCl₃ > FeCl₃ > ZnCl₂ であり、これは金属イオンのハード性とよく一致している。**88**

Table IV には本反応剤によるメチルエーテルの脱メチル化の代表的な例を示したが、いずれも短時間でしかも高収率で対応するアルコールあるいはフェノールを与えた。**89** 分子内に芳香族及び脂肪族メチルエーテルを有する化合物での脱メチル化は、耐メチル基が同時に除去される。またメチレンジオキシ化合物も容易に対応するカテーテルに変換される。

TABLE IV. Demethylation of Aliphatic and Aromatic Methyl Ethers

<table>
<thead>
<tr>
<th>R = Me</th>
<th>AlX₃ (2–5 mol eq)</th>
<th>in EtSH (yield %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R = Me</th>
<th>AlX₃ (2–5 mol eq)</th>
<th>in EtSH (yield %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AlBr₃</th>
<th>r.t., 14 h</th>
<th>(98%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCl₃</td>
<td>0°C, 0.5 h</td>
<td>(96%)</td>
</tr>
<tr>
<td></td>
<td>r.t., 0.5 h</td>
<td>(98%)</td>
</tr>
</tbody>
</table>

TABLE V. Conversion of γ-Butyrolactone to γ-Alkythiobutylic Acid

<table>
<thead>
<tr>
<th>C</th>
<th>R′</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Et</td>
<td>95</td>
</tr>
<tr>
<td>H</td>
<td>n-Pr</td>
<td>92</td>
</tr>
<tr>
<td>H</td>
<td>iso-Pr</td>
<td>83</td>
</tr>
<tr>
<td>H</td>
<td>iso-Bu</td>
<td>83</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>81</td>
</tr>
<tr>
<td>n-C₅H₁₀</td>
<td>Et</td>
<td>91</td>
</tr>
</tbody>
</table>

本反応剤のエステルに対する活性は余り高くはなく、Chart 10 に示すようなベンジルエステルやメチルエステルの脱アルキル化は進行する。**59,40** また、ラクトン類に対しては Chart 11 に示される機構で開環し、ラクトンのアルコール性基に SR 基が導入されたカルボン酸を与える。**89,41** 特に γ-ラクトンは容易に開環され、対応する γ-alkythioalakaonic acid を与える (Table V).

分子内にエーテルとエステルをもつ化合物におけ るエーテル結合の選択的開裂の 2 種のエステルが存在する化合物においても選択的な脱アルキル化をすることができる (Chart 12)。また、本反応剤の合成研究での使用例を Chart 13 に示す。

RCOOCH₃Ph \(\xrightarrow{\text{AlCl}_3}\) RCOOH

R = Ph (91%), n-C₅H₁₀ (99%)

RCOOOMe \(\xrightarrow{\text{AlBr}_3}\) RCOOH

R = Ph (94%), n-C₅H₁₀ (99%), adamantyl (95%)

Chart 10
3-5. Alkyl-RSH 系
この組みせ系はエステル結合の開裂には高い活性性を示すが、エーテル結合に対してはほとんど不活性である。これは前節の RSH を用いた組みせ系とは逆の活性性を示している。この現象は両基質とも求核剤のシフトを比較するうえで説明することができる。すなわち、脱アルキル化される炭素のシフトはエステル＞エーテルであり、求核剤のシフトは RSH>RSH であることからエステルは RSH を、エーテルは RSH と
4. 炭素-酸素結合以外の結合法則

前節で述べたハロゲン-チオアルコール系による C-O 結合法則の研究中、AlCl₃-EtSH 系は C-O 結合法則以外の結合開裂反応にも有効であることが観察された。この節で紹介する結合開裂反応は開裂を起こす結合の溝接位に相当な官能基を必要とする点で前節の反応様式とは異なり

4-1. α-ハロゲンの脱ハロゲン化反応

α-ハロゲン化合物は AlCl₃-EtSH 系により還元的脱ハロゲン化とジチオアセタール化された化合物を与えた (Table VII)。この反応は既に知られているハード-ソフト親和性に基づく push-pull 機構 (Chart 15 の A) で進行しているとも考えられるが、ソフトなハロゲン (Br) でもハードなハロゲン (Cl, F) でも同じ容易さで進行している点に疑問がある。平成中、ソフト求核剤として R,S を用いると脱ハロゲン化は容易に進行するが、塩素やフッ素の脱ハロゲン化は進行しない。この反応機構について検討した結果、塩素やフッ素のした α-ハロゲン化合物は脱ハロゲン化より早くカルボニル基がジチオアセタール化され、その大部分は Chart 15 の B に示される push-pull 機構で脱ハロゲン化されることが確認された。すなわちこの反応はカルボニル基のジチオアセタール化による hard-soft affinity inversion に基づくものである。

脱フッ素化反応はこれまでほとんど知られていなかったため本反応剤は特に有用である。

hard-soft affinity inversion

![Chart 15]

4-2. α-ニトロケトンの脱ニトロ化反応

一級の α-ニトロケトン化合物は AlCl₃-EtSH 系によりニトロ基が還元的に脱離されたジチオアセタール体を与える (Table VIII)。

![Table VIII]

NII-Electronic Library Service
この反応は前項のカルボニル基の hard-soft affinity inversion と同じく、まずカルボニル基がジチオアセタール化され、Chart 16 に示される push-pull 機構で脱＝トロ化が進行する。この反応で Lewis 酸としてハード性の低い酸 (ZnCl₂) を使用した場合はジチオアセタール化だけ進行し、C-N 結合の開裂は起こらない。

一方、二級及び三級の α-＝トロケトン (R¹=H or alkyl, R²=alkyl) の場合は C-N 結合開裂よりも C-C 結合開裂 (Chart 17) が優先するようになる。49) これは R¹, R² にアルキル基が入ることにより C-N 結合開裂への遷移状態の込み合いが大きくなり、これを緩和する方向にある C-C 結合開裂が優先するためと考えられる。

従来の還元的脱＝トロ化反応47) は塩基性条件下ラジカル機構を経ているため、二級及び三級＝トロ化合物に適用できるのに対し、本反応は酸性条件下イオン機構で進行するため一級の＝トロ化合物にのみ適用でき、再者は好対照をなしている。α-＝トロケトンはカルボン酸やアルデヒドと＝トロケトンから取縮よく合成されることから、この還元的脱＝トロ化反応と組み合わせ＝トロケトンを酸性条件下でのメチアル＝ニオン等価体として考えることができる (Chart 18)。

<table>
<thead>
<tr>
<th>Chart 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart 17</td>
</tr>
</tbody>
</table>

4-3. 炭素−炭素二重結合の開裂反応48) 一般的に 2 個の電子吸引性置換基で活性化された炭素−炭素二重結合はハード酸＝EtSH 組み合わせにより二重結合の開裂を起こしジチオアセタール体が形成される。また強力な電子吸引基 (＝NO₂) の場合は 1 個の電子吸引基でこの開裂反応が起こる。この反応例を Table IX に示し、＝トロオレフィンでの反応経路を Chart 19 に示す。

本反応は脱離する活性メチレン化合物 (b) の pKₐ 値と関連があり、少なくとも 13 までの pKₐ 値をもつ場合は反応が進行し、大きな値をもつ場合はチャールトの Michael 付加体を与える。本反応は環内に二重結合をもつ化合物の環開裂にも利用できる (Chart 20)。

| Chart 18 |

NII-Electronic Library Service
4-4. ハロフェノール類の脱ハロゲン化反応

-α-Halophenol は前述の α-haloketone のエノール型であると解釈することもできることからハード酸-ソフト求核剤系の haloanisole に対する反応性を調べた。この結果、AlCl₃-EtSH 系は haloanisole 類の脱メチル化のみに活性を示したが、AlCl₃-EtSH 系は脱メチル化とともに脱ハロゲン化にも活性であることが確認された。この脱ハロゲン化はソフトなハロゲン原子（ヨウ素、対等素）をもつ基質に活性を示したが、ハードなハロゲン原子（塩素、フッ素）をもつ基質に対しては不活性であった。また、ソフトなハロゲン原子をもつ基質であっても m-halophenol 類に対しては不活性であり、o-体と p-体のみを脱ハロゲン化するという選択性を有する。本脱ハロゲン化反応は一般的に緩和な条件下、短時間で収率よく進行し、Chart 21 に反応例を示す。

この反応機構を検討した結果、Chart 22 に示される radical cation 機構で進行しているものと結論された。すなわち、AlCl₃ は Lewis 酸として作用する以外に一電子酸化剤としても作用することが知られていること、o-体と p-体は AlCl₃ により radical cation を形成することが electron spin resonance (ESR) で確認されること、及
び Br の radical cation は硫黄原子と三電子結合を形成し安定化することが知られていることからこの反応経路と考えられた。40,

本反応はハロゲン原子を 2 個含む化合物においても適用でき、臭素と塩素を含む化合物においては臭素のみを選択的に脱離することができる (Table X).40 従来の芳香族ハロゲン化合物の脱ハロゲン化は還元剤を直接用いるもののがほとんどであり電子吸引基により反応性が向上するのに対し、本反応は電子供与基により反応性が向上するという特徴を有している。

4-5. 多環芳香族化合物の脱呪能基化反応45) ナフタレンの α 位置に相当する位置に呪能基 (OH, OR, SR, halogen) を有する多環芳香族化合物は AlCl3-EtSH 系反応剤により脱呪能基化された芳香族炭化水素を与える (Table XI).45) 本反応は上記呪能基が EtSH により置換されて形成される sulfide を中間体として進行していることが確認された。それ故、緩和な条件下 RSH を用いて反応すると alkylaryl sulfide の優れた合成法を開発することができた (Chart 23).45)

脱呪能基化反応の中間体である arylethyl sulfide からの還元的脱硫反応は前項の脱ハロゲン化の機構と同じく radical cation を経て進行することが ESR 等で確認されている (Chart 24).
4-6. 炭素-硫黄結合開裂を伴う Diels-Alder 反応 本稿までに紹介した組合せ反応剤のソフト求核剤として硫黄原子またはワク素原子に限られていたが、ここでは炭素原子（オレフィン類）を求核剤として使用した例を紹介する。

Chart 25 の a 式に示される酸触媒 Diels-Alder 反応は、ハード-ハード、ソフト-ソフトの親和性に基づいた反応であると解釈できる。また、b 式に示されるように thienium cation（3）は例れ少ないが Diels-Alder 反応に対して高い親和性をもつ dienophile であることが既に知られている。著者はこの両反応に着目し、新規な thienium cation Diels-Alder 反応の開発を検討した。

Chart 25

2-Alkylthionitroolefin 類（4）にハード酸（AlCl₃）を作用させるとハード-ハードの親和性より（5）のような thienium cation が形成されると予想される（c 式）。これに diene 類を作用させると、ソフト-ソフトの親和性に

基づく Diels-Alder 型の付加体（6）を経て C-S 結合が開裂したと考えられる成長体（7）が得られた。本反応は結果的には diene の C-S 結合への挿入反応であり、diene 類の 1,4 位への官能基化反応として考えることができると。

対称 1,3-diene 類では選択的に（Z）olefin を与えるように官能基化され（Table XII），非対称 1,3-diene 類では位置選択的に官能基化された olefin（8a,b）を与え，環式 1,3-diene 類では立体選択的に官能基化される。
された olefin (9) を与えた (Chart 26)。これらの選択性は Diels–Alder 型の付加体を考慮するとすべて説明される。2-Alkylfuran 類は例外的に反応し、furan 環の 4 位に nitroolefin が導入された化合物 (10) を与えた。この成績体は予想された成績体からさらに EtSH が脱離して形成されたものと考えられる (Fig. 2)。

5. おわりに

これまで述べてきた組合せ反応剤はどの有機の研究室の薬品棚にでも見かけるありふれた反応剤を混ぜ合わせただけのものであり、また反応条件も一般的に特別な実験法を必要としない点に大きな特徴を有している。一般的にこの種の結合開裂反応は使用する酸のハーデ性や求核剤のソフト性の強弱に敏感であり、また使用する溶媒の種類に反応は大きく左右されるため、これらの組合せ系をまだままだ然無数に考え出すことができると思われる。本総説では主に結合開裂に注目してきたが、特にに紹介した Diels–Alder 型の反応のように炭素を求核剤として使用すると炭素–炭素結合の形成反応の開発も可能であり、組合せ反応剤の概念は有機合成上幅広く応用できるものと思われる。

近年、野崎教授により大系化された "酸–塩基複合反応剤" の概念は著者らの組合せ系反応剤をも含むものであり、これらの反応剤の開発の意義は大きい。

謝辞 本研究は、藤田栄一京都大学名誉教授（大阪薬科大学学長）、富士薫京都大学教授、両先生の暖かい御指導と御鞭撻の賜物であり衷心より感謝いたします。また著にふれ御献策いただいた本学助教授 長尾善光博士に厚く御礼申し上げます。なお本研究は、朝倉（現慶応大学）、西田喜代治（現相模中研）、川端敏夫、S. P. Kahanpur の各博士、太田敬一郎、関本哲也、寺門真由美の各修士、伊藤彰宇学士の諸氏のご協力を仰げての成果であり、ここに心より感謝の意を表します。

引用文献

37) 野田 学, 垣本哲也, 伊藤 望, 藤田栄一, 富士 琢, 第 11 回反応と合成の進歩シンポジウム講演要旨集, 1984, p. 216.
44) K. Fuji, M. Node, T. Kawabata, M. Fujimoto, 未発表。
56) M. Node, S. P. Khanapure, T. Kawabata, A. Ito, K. Fuji, 未発表。
57) 野崎 一, 化学, 39, 770 (1984); idem, 科学, 53, 571 (1983); 大島幸一郎, 野崎 一, 有合化, 38, 460 (1980).