Methoxy 置換 4a-methyl-1,2,3,4-tetrahydrocarbazole 類の合成

坂井進一郎，若林幹夫，仁科正雄
千葉大学薬学部

Synthesis of 4a-Methyl-1,2,3,4-tetrahydrocarbazoles containing Aromatic Methoxy Groups

SHIN-ICHIRO SAKAI, MIKIO WAKABAYASHI, and MASAO NISHINA
Faculty of Pharmaceutical Sciences, Chiba University

(Received November 8, 1968)

Four kinds of derivative of 4a-methyl-1,2,3,4-tetrahydrocarbazole (I), substituted with monomethoxy group in the benzene ring, and 5,6,7-trimethoxy-1,2,3,4-tetrahydrocarbazole (IIa) and 6,7,8-trimethoxy-1,2,3,4-tetrahydrocarbazole (IIb) were synthesized by Fisher and/or Grignard method. These process are shown in Table I and in Chart 1, 2, and 3.

UV and mass spectra data of I derivatives are shown in Fig. 1, 3, and Chart 4.

著者等は Gardernia 属 (Loganiaceae) イソール系アルカロイドの構造研究の過程でそのモデル化合物として 4 種の monomethoxy 置換 4a-methyl-1,2,3,4-tetrahydrocarbazole (I), 6,7,8-および 5,6,7-trimethoxy-1,2,3,4-tetrahydrocarbazole (IIa および IIb) の合成を行ない、さらにそれらのスペクトルを測定した。

![Chart 1](image1)

![Chart 2](image2)

1) Location: Yayoi-cho, Chiba; a) Present address: Research Laboratory, Iwaki Pharm, Co., 1-5 Higashi-Koijiya, Ohota-ku, Tokyo.
Table I. (Compounds of I, R=OCH₃)

<table>
<thead>
<tr>
<th>Position of OCH₃</th>
<th>bp/mmHg</th>
<th>mp (°C)</th>
<th>Yield %</th>
<th>mp of indoline der.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>151—153/3</td>
<td>173—174⁹</td>
<td>78⁹</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>138—147/4</td>
<td>175⁹</td>
<td>58</td>
<td>77—79</td>
</tr>
<tr>
<td>7</td>
<td>151—153/3</td>
<td>200—202⁹</td>
<td>78⁹</td>
<td>137—138⁹</td>
</tr>
<tr>
<td>8</td>
<td>125—129/1</td>
<td>72—73</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

a) picrate b) N-tosylate c) mixture of 5- and 7-methoxy derivatives

(I) R=OCH₃ 類の合成は 4a-methyl-4aH-1,2,3,4-tetrahydrocarbazole (I) R=H の合成法⁶を参考として、methoxyphenylhydrazine (III) と 2-methylcyclohexanone (IV) との絡合中における Fisher のインドール合成法によって行なった。通常は絡合剤の差異により 1,2,3,4-tetrahydrocarbazole 誘導体の副生が考えられるが、この点の追究もしなかった。5- および 7-methoxy 誘導体 (I) は m-methoxyphenylhydrazine(V) R=H と 2-methylcyclohexanone の絡合で得られるが、本反応は類似例として Chart 2 に示すごとく 1-methyl-m-methoxyphenylhydrazine (V) R=CH₃ と 2-methylcyclohexanone の絡合、ついで還元後アルミナで分離する報告⁹がある。

われわれはほとんど同様の操作で実験を行なったが、5- および 7-methoxy 誘導体 (I) R=OCH₃ ともに油状物質であった。この混合物を結晶性誘導体に導くべく aq. MeOH 中 NaBH₄ で還元後アルミナカラムクロマトグラフにより分離し、5-methoxy-1,2,3,4,9-hexahydro-4a-methyl-4aH-carbazole (VII) R=H mp 74° と相当する 7-methoxy 誘導体 (VII) R=H 油状 (tosylate mp 137—138°) を得た。両者は再び Pb(OAc)₄ による酸化にて夫々油状の indolene 誘導体 (I) に戻る。7-Methoxy 誘導体 (VII) R=H はその N-methylation 化により文献⁹に記載された物理定数に一致する (VII) R=CH₃ とピクランを得たが、また Chart 3 で示すように別途合成により 7-Methoxy 誘導体 (I) を得、その確認を行なった。さらにまた Chart 1 による総合で得た 5- および 7-methoxy 誘導体 (I) の混合物は直接アルミナカラムクロマトグラフにより分離で 5-methoxy 体および 7-methoxy 体を得たが、両者とも油状物質でありその比率は 1:2 を示した。

\[
\text{Indole 誘導体にグリニー法によりその 3 位にアルキル基を導入する方法は未知の方法}^{⑨} \text{であり、また Chart 3 で示すように} 1,2,3,4-tetrahydrocarbazole (VIII) R=H \text{に対する報告も見られない}^{⑥} \text{本法を各 methoxy 誘導体 (VIII) R=OCH₃ に適用したが 6- および 7-methoxy 誘導体のみしか成功しなかったが、7-Methoxy 誘導体 (IX) R=OCH₃ は Chart 1 の別途合成品と同定した。}
\]

ついてモデル化合物合成の一環として 2,3,4-trimethoxyaniline⁸ あるいは 3,4,5-trimethoxyaniline⁹ と 2-hydroxycyclohexanone の絡合⁸により新たに 6,7,8-trimethoxy-1,2,3,4-tetrahydrocarbazole (Iia) および 5,6,7-trimethoxy-1,2,3,4-tetrahydrocarbazole (Iib) を得た。以上の実験で得た indolene 誘導体 (I) R=OCH₃ の吸収スペクトルは indole 系アルコイド研究上著しい。この内マススペクトルに関してはすでに Biemann あるいは Djerassi 等による indole 系アルコイドに関する研究⁶も知られているが tetrahydro-

6) 中崎昌雄, 日化, 76, 1159 (1955).
carbazole 領 (VIII) R = H or OCH₃ または tetrahydrocarbazolene 領 (I) R = H or OCH₃ に関しては報文が少なく、indole 系アルカロイドとして知られる uleine 誘導体についての報告が見られるのみである。

今回合成した化合物のマススペクトルは Chart 4 に示すように、当然予測される開裂様式を示した。とくに Xa → Xb および Xc → Xd の経路は 6-methoxy 誘導体 (X) について高分解能マススペクトルを測定し、これが約 2:8 の比率で開裂し、組成 (Xb) C₁₈H₁₆ON, m/e 158.061, 湧定値 158.062 および (Xd) C₁₉H₁₈N₂, m/e

Fig. 1. High Mass Spectra

m/e 158 of 6-methoxy derivative (X)
a: C₁₈H₁₆N b: C₁₉H₁₈N₂

Fig. 2

158.099、測定値 158.097 も一致する事を認めた。
ついでこれに methoxy 置換 tetrahydrocarbazole 類の NMR スペクトルを測定したが、特に 7-methoxy 体の芳香族水素のシグナルは Gardneria アルカロイド類と良い一致を示した。
さらにまた今回合成した methoxy 置換 indolenine 類の UV スペクトルを Fig. 3 に示す。

実験の部

NMR は日本電子 JNM-4H-100 (100 Mc), Mass は日立 RMU 6E Double Focus 型を使用した。

5- and 7-Methoxy-4a-methyl-4ah-1,2,3,4-tetrahydrocarbazole (I) R = OCH₃
7.25 g (52.5 mmole) m-methoxyphenylhydrazine と等モルの 5.89 g 2-methylcyclohexanone を 25 g の酢酸に溶解し、N₂ 気流中約 30 分間沸点まで温度を徐々に上昇させ、ついで 3 hr 煮沸する。反応終了後過酢酸を減圧留去し、10% NaOH にてアルカリ性としエーテル抽出する。151-153°/3 mmHg 8.82 g (混合物として収率 78%) の油状物を得た。これに 80% MeOH–H₂O 系で 2 g NaBH₄ を氷冷保存下に加え、ついで 2.5 hr 加熱還流する。反応終了後濃縮下 MoCl₅ 留去、水を加え、還流した油状物をエーテル抽出後減圧蒸留する。154-155°/3 mmHg 8.17 g (収率 92%) とこの物質は薄層クロマトグラフ（以下 TLC と省略）、SiO₂: benzene: EtOH: EtN 系で 2 スポットを与える。これを Al₂O₃ クロマトグラフ benzene–CHCl₃ (2:1) で凝縮分離を行なった。160 g の Al₂O₃ を用い 2 回クロマトグラフ分離後、前部溜出部分より餌の無色結晶 1.59 g、後部溜出部分より油状物質 4.847 g を 1:3 の比率で分離した。餌の無色結晶を蒸留 (128-130°/2 mmHg) 2 回ついて昇華精製 (70°/2 mmHg) 2 回、さらに n-hexane より 3 度再結晶後 TLC で 1 スポットを mp 77°。Anal. Calcd. C₃₀H₂₆O₈N₄: C, 73.85; H, 8.58; N, 6.45. Found: C, 77.11; H, 8.57; N, 6.64。その UV スペクトルおよび他の油状物質が 7-methoxy 体である事はこれ 5-methoxy-4a-methyl-1,2,3,4,10,11-hexahydrocarbazole (VII) R = H と推論できる。この 5-methoxy 誘導体 (VII) R = H 200 mg (9.22 × 10⁻³ mole) を 5 ml の dry benzene に溶解し 490 mg (1.06× 10⁻³ mole) の Pb(OAc)₄ を加え、室温 2 hr 摒歯後 Pb(OAc)₈ よる沈殿生成物、benzene を留去し、Al₂O₃ クロマトグラフで用いる CHCl₃ の溜出物を集める。138-142°/3 mmHg 120 mg に収率 60% にて 5-methoxy-4a-methyl-4ah-1,2,3,4-tetrahydrocarbazole (I) R = OCH₃ を得た。Pircate (from EtOH): mp 173°-175°。Anal. Calcd. C₃₀H₂₆O₈N₄: C, 54.05; H, 4.54; N, 12.67. Found: C, 54.12; H, 4.72; N, 12.27. UV (base) λmax (log ε): 247 (3.62), 278 (3.73), 320 (3.50), 318 (3.50).

ついで最初の Al₂O₃ カラムクロマトグラフにより 1:3 の比率で得た後の油状物質 4.847 g の 1 部 600 mg (2.77× 10⁻³ mole), Pb(OAc)₈ 1.47 g (3.32× 10⁻³ mole) を benzene 中で上記に同様の化反し、500 mg の粗物質（TLC 1 スポット）を得た。これは 7-methoxy-4a-methyl-4ah-1,2,3,4-tetrahydrocarbazole (1) である。Pircate: mp 200°-202° (from EtOH). Anal. Calcd. C₃₀H₂₆O₈N₄: C, 54.05; H, 4.54; N, 12.67. Found: C, 53.99; H, 4.58; N, 12.81. UV (base) λmax (log ε): 262 (3.59), 295 (3.35); 320 (3.50), 287 (3.33).

7-Methoxy-9,4a-dimethyl-4ah-1,2,3,4,10,11-hexahydrocarbazole (VII) R = CH₃ 上記 NaBH₄ 還元物の分離後部油状物質 (7-methoxy-9,4a-dimethyl-1,2,3,4,10,11-hexahydrocarbazole (VII) R = H) 4.847 g の 1 部 1 g および 35% 酸化 1 g を 50 ml トルエンに溶解しトルエンを除去しつつ 5 hr 煮沸し N-formyl 化を行なう。168/2 mmHg 914 mg (収率 81%) の油状物を得た。これは直ちに常法にしたがいLiAlH₄-dry ether にて還元し、60% の収率で 7-methoxy 誘導体 (VII) R = CH₃ を得た。Pircate: mp 130°-131° (from EtOH) 異常値 mp 134°はほぼ一致する。Anal. Calcd. C₃₀H₂₆O₈N₄: C, 54.78; H, 5.25; N, 12.22. Found: C, 54.66; H, 5.22; N, 12.37. UV スペクトル (base) も文献と同一波形を示した。さらにこれにメチル化は、MeOH 中アルコキシで NaBH₄ の還元物にあらかじめも 85% 収率で進行し、同一の mp 131°の pircate が得られた。

7-Methoxy 誘導体 (VII) R = H の Tosyl 化 300 mg (1.38× 10⁻³ mole) の油状の 7-methoxy 体 (VII) R = H を 5 ml の dry-pyridine 中 365 mg (2.07× 10⁻³ mole) の p-toluenesulfonylchloride を室温 2 日間作用

させ定量的な値より で mp 137—138° の無色松状晶の tosyl 体を得た。UV \(\lambda_{\text{max}} \) (log e): 295 (3.94); \(\lambda_{\text{min}} \) : 280 (3.83). Anal. Calcd. C_{11}H_{14}O_{3}NS: C, 67.80; H, 6.78; N, 3.77. Found: C, 68.19; H, 6.78; N, 3.62.

8. Methoxy-4a-4H-methyl-1,2,3,4-tetrahydrofurocarbazole (I) R = OCH₃ 図-Methoxyphenylhydrazine 4.00 g (2.9×10⁻⁴ mole) 2-methylcyclohexanone 3.25 g (2.9×10⁻² mole) および酢酸 14 ml より 5 および 7-methoxy 誘導体 (I) R = OCH₃ の場合と同一の条件下で総合を行なった。収率 64% で 125—129°/1mmHg の黄色の液体を得たが、固化して、mp 72—73° (from n-hexane) を示す。UV \(\lambda_{\text{max}} \) (log e): 256 (3.78), 300 (3.59); \(\lambda_{\text{min}} \) : 240 (3.65), 286 (3.42). Anal. Calcd. C_{14}H_{14}O_{2}N: C, 78.14; H, 7.91; N, 6.51. Found: C, 78.13; H, 8.03; N, 6.51. Picrate: mp 198—199°.

6-Methoxy-4a-4H-methyl-1,2,3,4-tetrahydrofurocarbazole (I) R = OCH₃ 図-Methoxyphenylhydrazine 1.5 g および 2-methylcyclohexanone 1.35 g および酢酸により上記と同一条件で総合を行なった。122°/2 mmHg 収率 37% の液体を得た。UV \(\lambda_{\text{max}} \) (log e): 274 (3.80); \(\lambda_{\text{min}} \) : 241 (3.30). Picrate: mp 175°. Anal. Calcd. C_{16}H_{19}O_{3}N_{4}: C, 54.05; H, 4.54; N, 12.67. Found: C, 53.63; H, 4.62; N, 13.00.

6,7,8-Trimethoxy-1,2,3,4-tetrahydrofurocarbazole (II) の合成 500 mg (2.73×10⁻³ mole) の 2,3,4-trimethoxyaniline と等モルの 2-hydroxycyclohexanone を混和し油浴温度 135—145° に加熱する。この際発生する水分を除き、ついで 1 滴の濃塩酸を加え、引続き N₂ 気流中約 30 min 油浴 140° に加熱反応後放冷した。反応物を水洗し再結晶し無色の結晶 mp 99—100° 330 mg (収率 45%) で目的物質を得た。UV \(\lambda_{\text{max}} \) (log e): 279 (3.97), 225 (4.50); \(\lambda_{\text{min}} \) : 255 (3.53). shoulder 290 (3.96). Anal. Calcd. C_{16}H_{18}O_{2}N: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.88; H, 7.20; N, 5.42. Mass m/e 261 (M+).

5,6,7,8-Trimethoxy-1,2,3,4-tetrahydrofurocarbazole (IIb) の合成 600 mg の 3,4,5-trimethoxyaniline と 650 mg の 2-hydroxycyclohexanone を使用し H₂ で場合と同一の条件で反応を行なった。bp 178—190°/2mmHg, MeOH—H₂O より再結晶し、mp 97.5—99° (板状) 384 mg (収率 45%)。UV \(\lambda_{\text{max}} \) (log e): 277 (3.77), 231 (4.39); \(\lambda_{\text{min}} \) : 256 (3.58), shoulder 295 (3.64). Anal. Calcd. C_{16}H_{18}O_{2}N: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.83; H, 7.53; N, 5.17. Mass m/e 261 (M+).

クリニー反応による 4a-Methyl-4aH-1,2,3,4-tetrahydrofurocarbazole (I) R = H および OCH₃ 誘導体の合成 (I) に注目 5 にしたが、表面を活性化し、微細した金属 Mg 0.48 g および EtJ から水エーテルで EtMgJ を作り、これに 1.71 g の 1,2,3,4-tetrahydrofurocarbazole のエーテル溶液を加え、10 min 還流ついて減圧下エーテルを留去、溶媒を水で洗浄した後、MeJ 2.84 g を加えた後 2 hr 時間反応させ、ついて水酢酸で分解し、ベンゼン液を水およびアルカリで洗浄後減圧蒸留を行なった。bp 115°/1.5mmHg 1.095 g (収率 54%) で 4a-methyl-1,2,3,4-tetrahydrofurocarbazole (I) R = H を得た。Picrate: mp 169—170°。別途既知合成品 pircate と混融同定した。

(ii) 6-Methoxy-1,2,3,4-tetrahydrofurocarbazole から (i) と同様の方法で 6-methoxy-4a-methyl-4aH-1,2,3,4-tetrahydrofurocarbazole (I) R = OCH₃ 160—165°/7 mmHg 収率 18% の pircate と混融同定した。

(ii) 7-Methoxy-1,2,3,4-tetrahydrofurocarbazole から同様の方法で 7-methoxy-4a-methyl-4aH-1,2,3,4-tetrahydrofurocarbazole (I) R = OCH₃ の pircate と 20% の収率で得。pircate: mp 205—206° を別途合成品と混融同定した。