The Vilsmeier Reaction of Methylpyrimidine Derivatives

TETSUZO KATO, HIROSHI YAMANAKA and HIDETOSHI HIRANUMA
Pharmaceutical Institute, Tohoku University

(Received March 9, 1970)

The Vilsmeier reaction (POCl₃ and dimethylformamide) on the active methyl group in pyrimidine derivatives was examined with 4-methyl-2-phenyl- (IIa), 4-methyl-6-phenyl- (IIIb), 2-methyl-4-phenyl- (IIc), and 4-methyl-pyrimidine (IIId). These compounds all afforded the corresponding malonaldehyde compounds (Va—d) in a fair yield. In the case of IIId, a minute amount of 4-aminopyridine-3-aldehyde (VIII), formed by the recyclization of the ring, was obtained.

Similar reaction was carried out with 2,6-dimethyl-4-pyrimidone (IIIe), and 4-chloro-2,6-dimethyl- (IIg), and 2,6-dimethyl-4-dimethylamino-pyrimidine (IIh). IIIf and IIIG afforded 4-dimethylamino-2-methylpyrimidine-6-malonaldehyde (X) produced by the attack on the methyl group in 6-position, and IIIf afforded the isomer (XII) of XI formed by the attack on the methyl group in 2-position.

γ-Picoline (I) あるいは methylpyrazine に対する Vilsmeier 反応の反応は、芳香環あるいはヘテロ芳香環化合物に対して一般的に見られる環のホルミル化が起きず、メチル基に double formylation が起こり側鎖カルボニル基を有することは知られている。—9とええば、I と dimethylformamide (以下 DMF と略す) phosphoryl chloride (以下 POCl₃ と略す)との反応では 3-dimethylamino-2-(4-pyridyl)acrolein (II) が得られる。本反応はメチル基から一挙に β-dicarbonyl 型の側鎖を合成できる点で有用な反応といえようが、I とはほぼ同程度の活性メチルを持つと考えられる α-ピロリンでは全く進行せず、またピリジン、ピロンなどのヘテロ芳香環化合物に関する検討はほとんど行われていない。

以上の見地より著者は各類のメチルピリミジンについて Vilsmeier 反応を試みたところ、興味ある知見が得られたので、その間の経過を報告する。

2-Phenyl-4-methylpyrimidine (IIa) を POCl₃—DMF で処理すると 3-dimethylamino-2-(2-phenyl-4-pyrimidyl)acrolein (IVa), C₉H₇NO₂ が得られる。核磁気共鳴 (NMR) スペクトル (CDCl₃ において 3.10 ppm に N(CH₃)₂、9.30 ppm に CHO に基づくプロトンのシグナルが認められ、さらに IVa は 10% NaOH で加熱加水分解すると好収率 (79%) で 2-phenylpyrimidine-4-malonaldehyde (Va) が得られることは IVa の構造が妥当であることを示している。Va はまた IIId を POCl₃—DMF で加熱後反応液を直ちにアルカリ処理しても得られる。

Va をビドラチンと反応させると容易に対応するビリゾール誘導体 2-phenyl-4-(4-pyrazolyl)pyrimidine (VIIa) に移行する。また、Va を過マンガン酸カリ水溶液中加熱すると mp 185—187°の無色針状品が得られ、このものは IIa を二酸化セレンで酸化して得た 2-phenylpyrimidine-4-carboxylic acid (VIIa) に全く一致した。

以上の知見から Va が malonaldehyde 側鎖を有することは明らかたといえるが、Va の NMR スペクトルに

1) Location: Aobayama, Sendai.
において、17.3-17.8 ppm に分子内水素結合を形成する水素原子に由来するものと思われる 1H 分のシグナルが存在すること、赤外吸収 (IR) スペクトルにおいて 1660 cm⁻¹ に共役カルボニルに相当する吸収が認められることなどより、Va の構造はジアデヒド型 (Va) よりもエノールアデヒド型 (Va') と考えるのが妥当であろう。また Va のピリミジン環 5 位プロトン (8.70 ppm) は VIa のそれ (7.65 ppm) に比べ 1.05 ppm 低磁場側に出現している。これは Va' のエノール OH がピリミジン環の 3 位窒素と水素結合を形成したため、5 位のプロトンがアデヒドカルボニル基の磁気異方性効果を受けたものと考えると無理なく説明できる。

また Va の質量スペクトルには m/e 226 の分子イオンピークの他に M⁺-CO イオン (m/e 198)、さらにそれから -OH の脱離した m/e 181 イオンのピークが大きい強度で出現している。この知見もエノール型 (Va') を支持するものといえよう。

なお、Va はアルカリに対して安定であり、たとえば、10% NaOH と長時間加熱還流しても変化しないが、希塩酸と加熱すると加水分解を受け IIIa にもどる。この際、二酸化炭素の発生は認められず、反応母液がクロモトープ酸反応陽性を示すことから、Chart 1 下段に示したように、Va が酸性加水分解により酰酸を脱離して IIIa に移行するものと考えている。

同様にして、4-メチル-6-フェニルピリミジン (IIIb) および 2-メチル-4-フェニルピリミジン (IIIc) もそれぞれ対応するアツデヒド体 (Vb, Vc) に導かれる。ただし、2-メチル体 (IIIc) の反応性は 4-メチル体 (IIIb) にくらべ著しく低いものと思われ、Vc の収率は 8% に止まり (Vb, 48%) またかなりの原料回収 (28%) が認められた。Vb は過マンガン酸カリウムで酸化すると対応するカルボン酸 (VIIb) に、ヒドラチンと処理すると

![Chart 1](attachment:chart1.png)
ビラソール誘導体（VIIb）に移行し、希塩酸と加熱すると原料 IIIb を再生するなど、Va と同様の挙動を示し、その機器分析データも 6-phenylpyrimidine-4-malonaldehyde (Vb) 構造と矛盾しない。

次に 4-methylpyrimidine (IIIc) を POCl₃-DMF で処理すると 3-dimethylamino-2-(4-pyrimidinyl)crotonaldehyde (IVd) が得られた。IVd についても、アルカリ処理によりマロンアルデヒド体（Vd）を与え、Vd とヒドランとの反応から 4-pyrazolopyrimidine (Vld) が生成することなど、その化学的性質は IVa の場合とほとんど同様である。しかし、ここで特徴的なことは IVa を分離した反応母液より低収率であるが CH₃ON₃ (VIII) に相当する mp 115° の黄色結晶が捕えられた点である。VIII はその分子組成、IR および NMR スペクトルから 4-aminopyrimidine-3-aldehyde (lit. mp 113〜114° 69) と予想され、事実、文献に示したる 4-aminonicotinic acid の isopropylidenedihydrizide (IX) を McFadyen-Stevens 法で還元して合成した標品と同一物であった。

IIIId の Vilsmeier 反応において IVd 以外にピリミジン環を母核とする成績体（VIII）が得られることは、本反応の過程にピリミジン環の閉環（おそらく 2,3 位関）再開環が介在することを示すものであり、きわめて示唆に富んだ知見といえるが、その機器および応用的展開は今後の検討に待といえよう。

さらにメチル基を持つない誘導体 4,5-trimethylenepyrimidine (IIIe) の活性メチレンも Vilsmeier 試薬に活性を示し、7-dimethylaminomethylene-SH,6,7-dihydrocyclopenta(d)pyrimidine（X）に移行することが認められた。

最後にアルキル基以外の置換基が本反応の過程でどのような挙動を示すかを検討する目的で 2,6-dimethyl-4-
pyrimidone (III), 4-chloro-2,6-dimethylpyrimidine (IIg), 4-dimethylamino-2,6-dimethylpyrimidine (IIIh), および 2-ethyl-6-methyl-4-pyrimidone (III) の Vilsmeier 反応を試みた。
その結果, III と IIg とからは同一成膜体, C_{16}H_{12}O_N_2 (XI), mp 215°が得られること, M⁺ IIIh からは XI が得られず, 低収率であったが, XI の異性体 C_{16}H_{12}O_N_2 (XII), mp 200°—202°が捕捉された。XI は 10% NaOH と長時間加熱してもほとんど変化しないこと, ヒドランチオン処理するとビラゾール異体 (XIII) に移行するが XIII には (CH₃)₂N - が残っていることなどから 2-methyl-4-dimethylaminopyrimidine-6-malonaldehyde (XI) あるいは 4-dimethylamino-6-methylpyrimidine-2-malonaldehyde と考えられる。
さらに XI の質量スペクトルにおいて m/e 207 [M⁺—CO], m/e 179 [M⁺—CO], m/e 162 [172—OH] などのピークが強く認められることは, 一連のメロンアルデヒド体における質量スペクトルの所見とよく一致している。また XI の NMR スペクトルには解内窒素と副鉄メロンアルデヒドのエニール水酸基より構成される分子内水素結合の存在を示すシングナル (15.0 ppm) が認められ, ピリミジン 5 位プロトンのシングナルが 7.77 ppm (1H, singlet) に出現している。この値は先にも述べたように, 5 位プロトンの通常の化学シフトの値に比べ 1 ppm 程度低く, IIIh の 6 位メチル基に Vilsmeier 試薬が反応していることを示しているといえよう。
これに加え, Table に示すことと, IIIh および得られる異性体 (XII) の 5 位プロトンは 6.0 ppm (1H, quartet, J = 1.0 cps) にあらわれており, さらにこれには 6 位メチル基 (2.35 ppm, 3H, doublet, J = 1.0 cps) と coupling している。

![Table I. NMR Data of IIIh, XI and XII](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>-C=CH₃-OHc</th>
<th>2-CH₃</th>
<th>4-N-C₃H₅</th>
<th>5-H</th>
<th>6-CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>R₂</td>
<td>R₄</td>
<td>R₆</td>
<td>H₄ & H₅</td>
<td></td>
</tr>
<tr>
<td>IIIh</td>
<td>CH₃</td>
<td>N₄CH₃</td>
<td>CH₃</td>
<td>—</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3H, s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6H, s)</td>
</tr>
<tr>
<td>XI</td>
<td>CH₃</td>
<td>N₄CH₃</td>
<td>C=CH₉-O</td>
<td>(2H, s)</td>
<td>9.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1H, s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3H, s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6H, s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1H, d)</td>
</tr>
<tr>
<td>XII</td>
<td>C=CH-OH</td>
<td>N₄CH₃</td>
<td>CH₃</td>
<td>(2H, s)</td>
<td>9.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1H, s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6H, s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1H, d)</td>
</tr>
</tbody>
</table>

All NMR spectra were determined at 60 Mcps in CDCl₃ solution. Chemical shifts are reported as δ values measured from tetramethylsilane as an internal standard.

以上の知見を総合すれば XI は 2-methyl-4-dimethylaminopyrimidine-4-malonaldehyde であり, XII は 4-dimethylamino-6-methylpyrimidine-2-malonaldehyde であるとするのが最も妥当である。
IIIh が POCl₃ によりすみやかに IIIg に移行することは前報の事実であり, IIIg が DMF により IIIh を与えることも実験的に確かめた。したがって, 中 IIIh から IIIg が生成した 6 位メチル基に Vilsmeier 反応が起り, 次いで 4 位クロール基が DMF によりジメチルアミノ基に置換され XI が生成したものを考えられる。ただし, IIIh を出発物質とした場合のみに反応の配向性が異なり XII が反応するかは明らかでない。
なお, IIIh の Vilsmeier 反応からもメロンアレルデヒド体 (XIV) の得られるが, NMR スペクトルでは 2 位のメチル基が反応していないことを示し, IIIh と同様に 6 位が攻撃されていることは明らかである。XIV の紫外吸収スペクトルが XI のそれに近似していることも, この構造を支持するものと考えている。

実 験 の 部

3-Dimethylamino-2-(2-phenyl-4-pyrimidyl)acroleine (IVa) 水冷下 POCl₃ (5 g) 中に DMF (7 g) および IIa (1.6 g) を加え, 液温が室温に達するまで放置, 次いで 60—70° に 4 hr 加温する。放冷し K₂CO₃ 鮮和水

7) 融点はすべて未補正。NMR の値は (CH₃)₂Si を内部標準とし δ (ppm) で示した。
溶媒で中和し、ether で抽出する。ニュートル抽出液を乾燥（無水 K₂CO₃）、溶媒を留去、残った粗結晶をアセトン
325 (4.27). NMR (CDCl₃): 3.10 (6H, singlet, N(CH₃)₂), 7.40—7.60, 8.35—8.60 (5H, multiplet, phenyl) 8.70 (1H, doublet, J = 5 cps, 6-H) 9.30 (1H, singlet, -CHO).

2-Phenylpyrimidine-4-malonaldehyde (Va) 1) POCl₃ (17g), DMF (25g) および IIIa (5.8g) を水冷下混合し,
65° に 4 hr 加熱する。冷却後 10% NaOH を加えアルカリ性とし、沸騰水浴上 HN (CH₃)₂の発生が止むまで
加熱。次いで冷却下に塩酸酸性とすると結晶が析出する。浄取し MeOH にて再結晶する。mp 158—161°,
淡黄色針状晶。4.8g (62%) Anal. Calcd. C₉H₇NO₃ (Va): C, 69.01; H, 4.46; N, 12.38. Found: C, 68.96; H, 4.26; N, 12.22. IR υmax cm⁻¹: 1580, 1610, 1660. UV λmax μ: 260 (4.47), 316 (4.25). NMR (CDCl₃): 7.40—
7.80, 8.10—8.40 (5H, multiplet, phenyl), 8.70 (2H, singlet, 5-H, 6-H), 9.46 (1H, singlet, -CHO), 9.15 (1H,
singlet, -CHO), 17.3—17.8 (1H, broad singlet, OH), Mass Spectrum m/e: 226 (M⁺), 198 (M⁺—CO), 181
(198—OH).

2) IVa (100mg) を 10% NaOH (5ml) に加え水冷上で 85—95° に 5 min 加熱する。冷却後 10% HCl で弱
酸性とし、以下 (1) と同様に処理する。mp 158—161° の Va 70 mg (79%) を得。(1) にて得た Va と混融し融
点降下を認めない。

2-Phenylpyrimidine-4-malonaldehyde (Va) の酸性加水分解 Va (0.8g) を 10% HCl (20ml) に懸濁し、2
hr 加熱還流する。冷却後 10% NaOH で水冷してニュートルで抽出する。ニュートル中性層を減圧蒸留し bp 140° (mmHg)
の無色液体 0.3 g (50%) を得。2-Phenyl-4-methylpyrimidine (IIa) の標品と一致を IR で確認。

2-Phenylpyrimidine-4-carboxylic Acid (VIIa) 1) ビリジン (10ml) 中に SeO₂ (0.23g) および IIIa (0.31g)
を加え、4.5 hr 加熱還流する。冷却後析出する Se を浄取、ビリジンを減圧で留去し、残渣を 10% NaOH で抽出す
る。NaOH 抽出液を 10% HCl で中和し、析出結晶を浄取、ベンゼンにて再結晶する。mp 185—187° 無色針
状晶、0.22 g (63%)。Anal. Calcd. C₉H₇O₂N₂ (VIIa): C, 65.99; H, 4.03; N, 13.99. Found: C, 65.89; H, 3.84;
N, 13.74. IR υmax cm⁻¹: 1720 (shoulder), 1773.

2) Va (0.45g) と KMnO₄ (1.1g) とを H₂O (50ml) に加え、沸騰水浴上 3 hr 加熱する。溶媒を留去し MnO₂を浄取し、
浄液を 10% HCl にて中和し結晶が析出する。浄液をベンゼンにて再結晶する。mp 185—187° 無色針
状晶、0.49 g (100%)。1) にて得た VIIa の標品と混融し融点降下を認めない。

2-Phenyl-4-pyrazolopyrimidine (VIIa) Va (0.3g) と 80% H₂N·NH₂·H₂O (0.25g) を混合すると、急速
に反応し固化する。減圧下乾燥しベンゼンにて再結晶する。（減圧乾燥しても結晶し難い）mp 217°. 無色針状晶,
0.21 g (70%)。Anal. Calcd. C₉H₁₀N₂ (VIIa): C, 70.25; H, 4.54; N, 25.21. Found: C, 70.29; H, 4.68; N, 25.12.

6-Phenylpyrimidine-4-malonaldehyde (Vb) POCl₃ (5g), DMF (7.5g) および IIIb (1.7g) を用い、Va 合
成の場合と同様に処理する。EthOH にてつゆ処理する。mp 229° (decomp.)、淡黃色針状晶。1.1 g (48%). Anal. Calcd. C₁₁H₁₂O₂N₂ (Vb): C, 69.01; H, 4.64; N, 12.38. Found: C, 68.83; H, 4.52; N, 12.29. IR νmax cm⁻¹: 1600, 1615, 1670.

6-Phenylpyrimidine-4-malonaldehyde (Vb) の酸性水分解 Vb (0.663 g) を 10% HCl (20 ml) に懸濁し、2 hr 加熱煮沸する。冷後 10% NaOH で中和し、CHCl₃ で抽出する。CHCl₃ 移行分を減圧蒸留し、bp 146–148° (12 mmHg) の無色液体 0.28 g (53%) を得、4-Methyl-6-phenylpyrimidine (IIIb) との一致を IR にて確認。

4-Pyrazolyl-6-phenylpyrimidine (Vb) Vb (0.1 g) と 80% H₂N-N₂H₂-H₂O (0.1 g) とを Vital 合成の場合と同様に処理する。mp 195–196°、無色針状晶。65% (52%) を得。Anal. Calcd. C₁₉H₁₆N₄ (Vb): C, 70.28; H, 4.54; N, 25.21. Found: C, 70.27; H, 4.76; N, 25.09.

6-Phenylpyrimidine-4-carboxylic Acid (VIIb) Vb (0.45 g), KMNO₄ (1.1 g) を H₂O (50 ml) 中に加え、以下 VIIla の合成と同様に処理する。mp 178–179° (decomp.) (減圧沸騰)、無色針状晶、0.40 g (100%). Anal. Calcd. C₁₃H₁₂O₂N₂ (VIIb): C, 65.99; H, 4.63; N, 13.99. Found: C, 66.39; H, 4.02; N, 13.82. IR νmax cm⁻¹: 1720 (shoulder), 1773. 本物質 (VIIb) は IIIa の SeO₂ 水溶液に準 IIIb を SeO₃ にて処理しても得られる。IR にて一致を確認。

4-Phenylpyrimidine-2-malonaldehyde (Ve) POCl₃ (4.6 g), DMF (11 g) および IIC (1.9 g) を用い Ve 合成の場合に準じて反応を行う。反応終了後 10% NaOH でアルカリ性とし、エーテル抽出する。エーテル移行分を減圧蒸留すると bp 140–142° (13 mmHg) の無色液体が得られるが冷却、蒸発すると結晶化する。mp 53–54°, 0.54 g (28%), IIIc (mp 54°) と混ざり融点降下を認めない。

4-Methylpyrimidine (VIII) の合成 POCl₃ (13 g), DMF (20 g) および IId (2.5 g) を混合し、65° に加温する。6 時間後、K₂CO₃ 水溶液を加えて中和し、エーテル、C₆H₆, CH₂COOH の順に抽出する。エーテル抽出液を乾燥 (Na₂SO₄), 濃縮して得られる無色針状晶を石油エーテル (bp 60–70°) にて再結晶する。mp 115–115.5° 淡黄色セリゼス 30 mg を得、別途合成の 4-aminopyrimidine-3-aldehyde (VIIa) と同様に混ざり融点降下を認めない。IR νmax cm⁻¹: 1675, 3390, 3550. NMR (CDCl₃): 8.55 (1H, doublet, J = 6. c), 6-H), 6.23 (1H, doublet, J = 6. c, 6-H), 6.40–7.20 (2H, broad singlet, NH₃), 8.60 (1H, singlet, 2H), 10.0 (1H, singlet, COH).

C₆H₆ 抽出液を濃縮乾燥し残渣を冷却、蒸発すると結晶化する。結晶を CHCl₃ にて再結晶し、再び蒸発する。析出する結晶をアセトン-へキサンにて再結晶する。mp 106–108°、無色針状晶、0.7 g (15%). Anal. Calcd. C₆H₄O₃N (IVd): C, 61.00; H, 6.26; N, 23.72. Found: C, 60.84; H, 6.17; N, 23.98. CH₂COOH 抽出液を凍結し、残渣に 10% HCl を加え沸騰水浴上加熱する。結晶が析出する。析出した CHCl₃ にて再結晶する。mp 229° (decomp.), 無色針状晶、0.45 g (11%). Anal. Calcd. C₆H₄O₃N (Vd): C, 56.00; H, 4.03; N, 18.66. Found: C, 55.86; H, 3.93; N, 18.63. IR νmax cm⁻¹: 1660, 1670. UV ϵmax (log e) cm⁻¹: 255 (4.12), 307 (3.95), 335–346 (4.07). NMR (CF₃COOH): 8.85 (1H, doublet, J = 6. c, 5-H), 9.01 (1H, doublet, J = 6. c, 6-H), 9.20 (1H, singlet, 2-H), 9.44 (2H, singlet, C=CH–CON). Mass Spectrum m/e: 150 (M+), 122 (M–CO), 105 (22–OH).

Pyrimidine-4-malonaldehyde (Vd) Vd 160 mg (10% NaOH (5 ml) にとじ沸騰水浴上 5 min 加熱する。冷後 10% HCl にて中和、析出結晶を蒸発し、MeOH にて再結晶する。mp 229° (decomp.), 無色針状晶、100 mg (74%). 先に得られた V と IR にて比較同定。

4-Pyrazolylpyrimidine (Vid) Vd (0.45 g), 80% H₂N-N₂H₂-H₂O (0.3 g) とを Vital 合成の場合に準じて処理し結晶を凍結乾燥して精製する。mp 209° (decomp.), 無色針状晶、0.21 g (49%). Anal. Calcd. C₆H₄N₂ (Vid): C, 57.52; H, 4.14; N, 38.34. Found: C, 57.99; H, 4.29; N, 38.61.

4,5-Trimethylenepyrimidine (IIIc) の Vital 合成 POCl₃ (11 g), DMF (5 g) および IIC (1.23 g) を水浴上 65° に 5 hr 加熱する。冷後 K₂CO₃ で中和し、CHCl₃ で抽出する。CHCl₃ を留去し、残渣を C₆H₆ にて再結晶する。mp 131–132°、無色針状晶、0.63 g (36%). Anal. Calcd. C₆H₄N₂ (X): C, 68.54; H, 7.48; N, 23.98. Found: C, 68.82; H, 7.57; N, 24.26.

2-Methyl-4-dimethylaminopyrimidine-6-malonaldehyde (XI) 1) POCl₃ (9 g), DMF (15 g) および IIIF (2.5 g) を混合し、沸騰水浴上 65° に 4 hr 加熱する。冷後 K₂CO₃ で中和し、減圧乾燥する。残渣をアセトンで抽出、アセトンを留去し、残渣を CHCl₃ にて再結晶する。mp 215° (decomp.), 無色針状晶、0.42g (10%). Anal. Calcd. C₆H₄N₂O₂H (XI): C, 57.96; H, 6.32; N, 20.28. Found: C, 57.71; H, 6.26; N, 19.98. IR νmax cm⁻¹: 1612, 1650. UV ϵmax (log e) cm⁻¹: 260 (4.38), 325 (4.33), 336 (4.40). Mass Spectrum m/e: 207 [M+], 179 [M+–CO], 162 [179–OH].

2) POCl₃ (4.5 g), DMF (7 g) および IIIF (0.96 g) を用い (1) 同様に処理する。mp 215° (decomp.), 無色針状晶、0.6 g (43%). (1) で得た XI と IR にて同一物であることを確認。
4-Dimethylamino-6-methylpyrimidine-2-malonaldehyde (XII)
DMF (7.3 g), POCI₃ (4.5 g) および IIIh (1.51 g) を用い水浴上 65°C に 4 hr 加熱する。冷却 K₂CO₃ で中和し、エーテル抽出する。エーテル移行分より bp 120°C (26 mmHg) の IIIh 0.54 g (36%) を回収する。水層は減圧乾固し、残渣を熱アセトンで抽出する。アセトン移行分をベンゼンにて再結晶する。mp 200—202 (decomp.), 浅黄色針状晶。0.12 g (5.6%).
Found: C, 57.95; H, 6.30; N, 20.44.
IR νₑ.max cm⁻¹: 1600, 1630, 1660 (shoulder).
UV λₑ.max nm (log ε): 264 (4.49), 278 (4.49), 310 (4.14).

2-Methyl-4-dimethylamino-6-pyrazolopyrimidine (XIII)
XI (286 mg), 80% H₂N·NH₂·H₂O (500 mg) を 10% NaOH (2 ml) 中に加え 5 min 混合水浴上に加温する。冷却後炭酸アルカリ性とし CHCl₃ で抽出する。CH₂Cl₂ を留去し、残渣を C₆H₆ にて再結晶する。mp 210—212°C, 無色針状晶, 141 mg (50%).
Found: C, 59.44; H, 6.56; N, 34.68.

2-Ethyl-4-dimethylaminopyrimidine-6-malonaldehyde (XIV)
POCl₃ (4.6 g), DMF (7.3 g) および IIIi (1.0 g) を水浴上 65°C で 4 hr 加熱する。冷却 K₂CO₃ で中和してから減圧乾固する。残渣を EtOH で洗漬し、EtOH 移行分をベンゼンに溶解し、浄い Al₂O₃ 樹を通過して脱色する。ベンゼンを留去し、残留する粗結晶をアセトンにて再結晶する。mp 181°C (decomp.), 無色針状晶, 0.44 g (28%).
Found: C, 59.99; H, 6.66; N, 19.41.
IR νₑ.max cm⁻¹: 1613, 1655.
UV λₑ.max nm (log ε): 260 (4.38), 325 (4.33), 336 (4.40).
NMR (CDCl₃): 1.35 (3H, triplet, J=7.5 cps, CH₂-CH₃), 2.77 (2H, quartet, J=7.5 cps, CH₂-CH₂), 3.17, 3.29 (6H, N (CH₂)₂), 7.77 (1H, singlet, 5-H), 9.21 (2H, singlet, -CHO, C=CH), 15.5 (1H, singlet, OH).
Mass Spectrum m/z: 221 [M⁺], 193 [M⁺−CO], 176 [193−OH].

2,6-Dimethyl-4-dimethylaminopyrimidine (IIIh)
IIIi (0.77 g) を DMF (10ml) 中に加え 3.5 hr 加熱濃縮する。反応後減圧で DMF を留去し、残渣に 10% NaOH を加えて中和する。エーテル移行分より bp 120°C (26 mmHg) の液体 (IIIh) が 0.28 g (35%) 得られる。IIIh は 2,6-dimethyl-4-dimethylaminopyrimidine (IIIh) の標品と IR で比較同定した。

謝辞 本研究にあたり、元素分析、NMR および Mass スペクトルを測定していただいた本学薬学科中央分析室の佐藤藤子、山崎智恵子、只野優子、平田尚司の諸氏に感謝します。