The Characteristics of Uricase Production by a *Hyphomycetes* isolated from the Excrements of *Cettia diphone cantans*. V. Uricease Production by Pellicle in Various Growing Stages

YUKIKO KON, YAYOI DOBASHI and HAKUJI KATSURA
Shiseido Laboratories

(Received March 24, 1976)

A strain of *Scopulariopsis brevicaulis* was cultured in a nutrient medium (primary culture) and the culture medium was changed with a medium consisting of uric acid and dipotassium hydrogen phosphate at various stages of growth (logarithmic, stationary, and autolytic) to continue cultivation (secondary culture). In the primary culture, maximum formation of uricase was found in the latter part of the logarithmic stage. In the secondary culture, almost constant uricase activity was seen after 24–48 hr of culture, irrespective of the amount of uricase present during the stage of fungal growth and before the start of secondary culture. In the cells of the logarithmic stage, this constant value of uricase activity was reached after 6 hr, indicating a significantly rapid adaptation of the cells in this stage to induction and formation of uricase, compared to cells in other stages of growth. Thus, difference in induction and formation of uricase according to different growth stages appeared markedly. The constant value of uricase activity found in the secondary culture was not greater than that of the maximum value in primary culture. It was concluded from the present series of experiments that, in practice, uricase production by this strain will be more efficient by the primary culture as reported previously than by the use of a secondary culture as in this work.
菌株が、ウリーカーゼの誘導生産においていくつかの興味ある特性を示すことを見抜き、報告した。その際、ウリーカーゼ生産は、ほとんどの培養条件において対数期後半に最大となること、これに比して、静止期初期に菌体に溶解した尿素からのウリーカーゼの誘導生産は、きわめて効率の低いことが認められ、菌の生産段階によるウリーカーゼ生成能の差異が観察された。

そこで今回は、栄養培地で培養して得た種々の生育段階の菌膜を、尿酸を含む単純組成培地で、菌の代謝活性を抑制しながら再度培養することによって、菌の生育段階とウリーカーゼ活性との相関性を検討した。

実験の部

培養方法および培地 一次培養は、既報のとく、グルコース、カゼイン酸および無機塩を基本組成とする培地で、25℃にて液体培養をなった。二次培養は、既成株膜下の一次培地を無菌状態で二次培地と交換して、20℃にてを行なった。

一次培地には、上述の基本組成に尿酸を0.2%添加したものと、添加しないものとの2種類を用いた。二次培地は、尿酸(0.01%)、グルコース(0.05、1.0%)およびリン酸ニトリウム(0.1%)の三成分で調製した。初発pHは、それぞれ6.1±0.1、6.3±0.1であった。

試薬は、いずれも市販の特級品を使用した。乾燥菌体量、ウリーカーゼ活性および培地中の尿酸濃度の測定は、既報の方法に従った。

結果

1) 一次培養における菌の生産とウリーカーゼ生産

Fig.1に示したように、一次培養における菌体量は、培養期間を通じて尿酸添加培地の方がやや多く、生産曲線に尿酸の有無に関係なくきわめて似た。ウリーカーゼ活性は、尿酸無添加時もわずかに検出されたが、尿酸添加によって著しく上昇し、5日後に最高値を示して、以後急速に低下した。

Fig.1から、培養5日、9日および14日後の菌膜は、それぞれ対照期後半、静止期および自己消化期前半に該当するもので、これら菌膜は二次培養に供した。

2) 二次培養における菌体量の変化

Table1は、種々の生育段階の菌膜の尿酸0.1%を含む二次培養における量変化を、一次培養時の尿酸の有無および二次培養時のグルコース濃度の関連において示したものである。

Table1に示したように、二次培養における菌膜の乾燥重量は、生育段階および一次培養時の尿酸の有無にかかわらず、6時間後には約10%の減少を示した。さらに、二次培地にグルコースを添加しない場合は約10%の減量のまま48時間後まで重量はほとんど変化なく、グルコースを0.5%添加した場合は48時間後にはほど二次培養開始時の重量にもどった。また、1.0%添加の場合は8〜15%の増量を示した。ただし、尿酸添加培地中で一次培養された14日菌膜のみは、約5%減量した。

二次培養初期の菌膜が淡黄色（透明）に着色し、また、48時間後には菌膜裏面の粘膜状の層がやや厚くなっているのを認めめたが、いずれの菌膜においても明らかに自己消化現象は、肉眼的には観察されなかった。

3) 二次培養におけるウリーカーゼ活性

1) グルコース添加時

Fig.2は、種々の生育段階の菌膜の、二次培養48時間後のウリーカーゼ活性を、一次培養時の尿酸の有無および二次培養時の尿酸濃度との関連において示したものである。二次培養のグルコース濃度は1.0%とした。

Fig.2から、二次培養48時間後の活性は、二次培養開始時に既成菌膜が有していた活性、すなわち一次培養によって誘導されたウリーカーゼ活性ではなく無関係で、二次培地の尿酸濃度に依存する

4) a) 近 由喜子, 士橋やよい, 桂 博二, 菌誌, 96, 66 (1976); b) Idem, ibid., 96, 277 (1976).
Table I. Change of Pellicle Weight by the Second Incubation

<table>
<thead>
<tr>
<th>Days</th>
<th>1st incubation</th>
<th>Dry weight of pellicle (g)</th>
<th>Time (hr) of 2nd incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount of urate added (%)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with glucose (0.5%)</td>
<td>without glucose</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1.32</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.44</td>
<td>1.29</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1.49</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.58</td>
<td>1.41</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1.43</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.48</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Fig. 2. Uricase Activity in Various Growing Stages of Pellicle at the Second Incubation

First incubation was performed with the basal medium wherein 0.2% urate added (II), or no urate added (I), and second incubation performed for 48 hr with the medium of glucose 1.0%, K₂HPO₄ 0.1% and urate 0.01% (a) or 0.1% (b).

- : uricase activity after first incubation
- : uricase activity after second incubation

Fig. 3. Change of Uricase Activity in Various Growing Stages of Pellicle by Time

Second incubation was performed with the medium of glucose 0.5%, K₂HPO₄ 0.1% and urate 0% or 0.1%.

A: pellicle grown for 5 days at the first incubation
B: pellicle grown for 9 days at the first incubation
C: pellicle grown for 14 days at the first incubation

Amount of urate added (%) 1st incubation 2nd incubation
- O: 0.2 0
- O: 0 0.1
- O: 0.2 0.1
ことと明らかであった。また、既成菌膜の生育段階による活性の差異は、一次培養時におけるほど顕著ではなく、尿酸濃度が 0.1%の場合はむしろ 5 日菌膜より 9 日および 14 日菌膜の方がやや高い活性値を示した。ただし 14 日菌膜のうち、尿酸添加培地で一次培養されたものは、有意に低い活性を示したのが特異的であった。

次に、二次培地のグルコース濃度を 0.5%，尿酸濃度を 0.1%として、二次培養におけるウリカーゼ活性の変化を経時的にしらべてみた結果を Fig. 3 に示す。尿酸を、一次、二次培養ともに添加した場合、一次で添加し、二次では添加しなかった場合、および一次で添加せず二次で添加した場合の 3 条件における活性の変化を追った。その結果、Fig. 3 に示したように、二次培養開始時に存在していたウリカーゼの活性は、二次培地中に尿酸を含まない場合に 24 時間後にいずれの生育段階の菌膜においてもほとんど検出されなかった。二次培地中に尿酸を含む場合は、48 時間後においても活性が示され、その活性値は既成菌膜の生育段階の相違による有意差は認められなかった。また、二次培地中に尿酸を添加した場合は、二次培養によって活性が顕著に上昇し、いずれの生育段階の菌膜でも 24–48 時間においてほぼ定常状態を示した。特に、48 時間後の活性には、生育段階の相違による有意差は認められなかった。すなわち、二次培養 48 時間後のウリカーゼ活性は、二次培養開始前の活性値には全く依存しないことが実証された。

i) グルコース無添加時 Fig. 4 は、二次培地中にグルコースを添加しない（尿酸濃度 0.1%）場合のウリカーゼ活性の経時変化を示したものである。Fig. 4 から明らかのように、本条件下においてもグルコース添加時とほぼ同様の結果が得られた。すなわち、二次培養開始時には検出されたウリカーゼ活性も、二次培地中に尿酸を添加しない場合は、24 時間後においていずれの生育段階の菌膜においても、ほとんど活性が示されなくなかった。二次、二次培地中に尿酸を添加した場合は、48 時間後まで活性の著しい変動はなく、5 日および 9 日菌膜の 48 時間後の活性はほぼ等しい値を示した。二次培地中に尿酸を添加した場合は、二次培養によって活性が著しく上昇し、いずれの生育段階の菌膜でも 24–48 時間においてほぼ定常状態を示した。その活性値は、9 日菌膜が他の菌膜に比較してやや高かった。

Fig. 3 と Fig. 4 とを対比すると明らかのように、二次培養時のウリカーゼ活性は、その経時変化を追うと、二次培地中にグルコースを添加した方が全般的にやや高い値を示す傾向があったが、有意差とは断定し難かった。

ii) グルコース無添加時 Fig. 4 は、二次培地中にグルコースを添加しない（尿酸濃度 0.1%）場合のウリカーゼ活性の経時変化を示したものである。Fig. 4 から明らかのように、本条件下においてもグルコース添加時とほぼ同様の結果が得られた。すなわち、二次培養開始時には検出されたウリカーゼ活性も、二次培地中に尿酸を添加しない場合は、24 時間後においていずれの生育段階の菌膜においても、ほとんど活性が示されなくなかった。二次、二次培地中に尿酸を添加した場合は、48 時間後まで活性の著しい変動はなく、5 日および 9 日菌膜の 48 時間後の活性はほぼ等しい値を示した。二次培地中に尿酸を添加した場合は、二次培養によって活性が著しく上昇し、いずれの生育段階の菌膜でも 24–48 時間においてほぼ定常状態を示した。その活性値は、9 日菌膜が他の菌膜に比較してやや高かった。

Fig. 4. Change of Uricase Activity in Various Growing Stages of Pellicle by Time

Second incubation was performed with the medium of KhPO₄ 0.1% and urate 0% or 0.1%.
A: pellicle grown for 8 days at the first incubation
B: pellicle grown for 9 days at the first incubation
C: pellicle grown for 14 days at the first incubation
amount of urate added (%)
1st incubation 2nd incubation
○: 0.2 0
●: 0 0.1
○: 0.2 0.1

Fig. 5. Incorporation of Urate by Pellicle in Various Growing Stages

Second incubation was performed with the medium of KhPO₄ 0.1% and urate 0.1%.
I: first incubation by the medium with 0.3% urate
II: first incubation by the medium without urate
二次培養時のウリカーゼ活性に及ぼす、菌膜の生育段階の相違の影響は、次の点で顕著に示された。すなわち、尿酸を一次培地のみに添加した場合における二次培養時の活性が低下、ならびに尿酸を二次培地のみに添加した場合における二次培養時の活性上昇が、5 日菌膜では9日および14日菌膜に比較して有意に遲かに行なわれた。この現象は、二次培地中のグルコースの有無とは関係なく観察された。

4）既成菌膜による尿酸の取りこみ
尿酸の取りこみに対する菌膜の生育段階の影響には、有意差は認められなかった。二次培地中のグルコース濃度の影響をみると、0%及び0.5%の間には有意差がなく、1.0%は0%および0.5%に比較して初期における取りこみが明らかに遅かであったが、48時間後には有意差が認められなくなった。また、尿酸を添加しない培地で生育した菌膜の方が二次培地からの尿酸の取りこみがやや活発な傾向が観察されたが、著しい差ではなかった。Fig.5は、グルコース0%培地における尿酸の取りこみを示したものである。

ま と め と 考 察
一次培養において誘導生成されたウリカーゼは、尿酸を添加せずに二次培養を行うことによって、いずれの生育段階の菌膜においても、24時間後にはその活性がほとんど認められなかった。大部分の活性が認められなくなったのは、対数期菌膜の菌膜が対数期に比較して有意に短かった。
逆に、一次培養では菌膜の形成のみを行なわせ、二次培養でウリカーゼを誘導生成させた場合は、いずれの生育段階の菌膜においても、その活性は24〜48時間で波を定状態を示した。ウリカーゼの生成のための適応は、対数期菌膜が他の菌膜に比較して有意に短かかった。
一次培養でウリカーゼを誘導生成させ、二次培養で尿酸を添加した場合は、いずれの生育段階の菌膜においても、48時間後まで活性の顕著な変動は観察されなかった。さらにその活性値は、一次培養では誘導生成を行なわなかった場合の、24〜48時間の活性値とはほぼ一致するものであった。すなわち、二次培養（24〜48時間）によって得られるウリカーゼ活性は、予め一次培養によって誘導生成された酵素活性に依存せず、いずれの生育段階の菌膜においても著しい差のない活性を示すことが実証された。以上の事実は、本菌株においてウリカーゼの生成が制御が行なわれていることを示唆するものであると考えられた。
酵素の誘導生成に対する菌の生育段階の影響は、既報のように適応速度において顕著に認められ、静止期および自己消期の菌膜に比較して、対数期菌膜は迅速な誘導生成を示した。従って、一次培養時に観察されたような、菌の生育段階の相違によるウリカーゼ生成の差異は、生成能の差異というよりもむしろ、適応性の差異に依存するところが大きいと考えられた。
一般に、種々の誘導酵素の生成は、グルコースによって抑制されることが知られており、他方、渡辺らは、放射能のウリカーゼ生成がカリフォニオンの共存下で、グルコースによって加速されることを認めていた。しかるに、本菌株では、二次培養時のグルコースの添加は、菌量の増加に寄与したが、尿酸の取りこみおよび酵素活性には顕著な影響を与えないかった。
本実験の結果を実用面から考察すると、次のごとがいえる。二次培養においてウリカーゼ生成の最大値を示す対数期菌膜において、新たに尿酸添加を加えることによって、その活性値を推移させることはできぬが、それを有効に上回るウリカーゼ生成を生ずることは不可能であった。換言すれば、本菌株によるウリカーゼ生産は、二次培養法によるよりも既報の培養法による方が効率が良いと結論された。微生物ウリカーゼは一般に、栄養源の添加によって生成が抑制されることが知られているが、本菌株は栄養源の存在下で良好な生育とウリカーゼ生産を同時に示することが、今回の実験からも明らかにされた。

謝辞 本研究にあたり、有益な御助言ならびに御鞭撻を賜わった東北大学薬学部 岡野定信教授に深甚の謝意を表します。また、本研究の発表を許可された当研究所 太田三郎所長に感謝いたします。