総 説

パーキンソン病に筋力低下は存在するのか

野垣 宏

山口大学医学部保健学科地域・老年看護学講座 支部部長小伝第1丁目1-1（〒755-8505）

Key words：パーキンソン病，筋力，等運動性収縮

Ⅰ パーキンソン病に筋力低下は存在するのか

パーキンソン病の主要症状としては，安静時振戦，筋強直（筋固縮），動作緩慢（無動）の3つ，ないしは立ち直り反射消失（姿勢反射障害）を加えた4つが挙げられる。特に重要な点は，症状・症状性は個別性あるいは同様性に大きく左右差を有することであり，今回の一連の研究はこの特徴を利用した，また直立障害（小額歩行や突進歩行，すみ足など）、姿勢異常（前傾姿勢や側傾）、仮面様顔貌，言語障害，書字障害，起居動作障害（寝返り困難など）、精神症状（抑うつなど），自律神経症状（便秘や排尿障害など）など多様な症状を認める。それらに加えて，日常診療において，パーキンソン症患者はしばしば筋力低下を訴えることがある。通常，徒手筋力テストではおおむね正常範囲であり，その訴えはいわゆる巧戦運動障害のひとつの表現として対応されてきたように思われる。一方，パーキンソン病の原発では筋肉部分に「with lessened muscular power」と記載されており1)，その存在の可能性は当初より指摘されていた。過去の報告としてはKollerら2)が，パーキンソン病患者は同年代の健常者に比べ筋力が低下していること，筋力低下はパーキンソン病の初期症状であり，振戦・筋強直などの他のパーキンソン病症状とは関連のない持続的の症状の可能性があること，などを指摘した。Yanagawaら3)も，パーキンソン病患者はコントロールに比べ筋力が低下していること，筋力は振戦・筋強直などとは関連のないこと，筋力低下は中枢神経機械の障害によって生じることを示唆した。しかしながらパーキンソン病における運動量学的の研究は，やはり上記主説の傾向をテーマとしたものが多々，筋力低下に関する研究は実に少ない。さらに従来使用されてきた筋力測定法は等尺性あるいは等張性筋力測定が主体であり，今回筆者が使用した等運動性筋力測定器は，すでにスポーツ医学や脳血管障害の分野ではかなり普及しているものの，パーキンソン病をはじめとする中枢神経変性疾患の検討にあまり使用されていない。そこで，パーキンソン病には無動などの運動の速度に関連する特徴的な症状があることより，等運動性筋力計バイペックスを用い，筋力と運動の速度との関連に着目して研究を開始した。

Ⅱ パーキンソン病には運動速度依存性の筋力低下が存在する

筋力測定の際に問題となるのは，単一変因性でいきいきである年齢，性別，スポーツ歴，利き手などによって筋力に大きな差が生じる。さらにパーキンソン病患者の場合には，症状の日内変動，意欲，抑うつ，認知機能などによって大きく結果が左右される。そこで今回の，筋力測定を実施するための時間帯（on時）に加え，同一個体における左右の筋力値を比較することとした。さらに利き手の影響が出る上肢ではなく下肢を測定部位と選択し，最も
単純な運動である膝屈伸力を測定した。そして何より、等運動性筋力計を用いて進行する運動の速度で筋力の関係を試行的に解析した。一般的に等運動性収縮においては、進行する運動速度が速ければ速いほど同一個体での筋力は小さくなる。そこで、それぞれの設定速度での筋力値の左右差を検討した。以上により、上記の筋力測定の際の問題点の影響を最小限にとどめた。

まず、明らかな症状・機能の左右差を有するヤール重症度IおよびIIの初期パーキンソン病患者12例（男性5例、女性7例、平均年齢62.5歳、平均罹病期間42.9ヶ月）に、等運動性筋力計サイベックスII+（山口大学医学部附属病院生活機能向上センター設置機器）を用い、両側膝屈伸力を入力ポルタ回転速度5 revolutions per minute (r/min) および15 r/minで測定し、得られたトルク曲線（Fig.1）より最大筋ピークトルク値（Fig.1のA、B）を算出し、症状優位側と非優位側との間で比較・検討した。この場合の症状・機能に明らかな左右差を有すると、日本Parkinson's Disease Rating Scaleの振戦または筋強度の項目において1段階以上の左右差を有することとした。その結果、膝伸展および屈曲とも低速度である5 r/minでは症状優位側と非優位側との間で最大筋ピークトルク値に有意差を認めなかったのに対し、中度の15 r/minでは症状優位側が非優位側に比べ有意に最大筋ピークトルク値が小さかった（Table 1）。このことより、パーキンソン病には筋力低下が存在し、それは進行する運動の速度が大きくなるほど著明になる、すなわち運動速度依存性であることを国内外で初めて明らかにした。

III パーキンソン病における速度依存性筋力低下は疾患固有の症状である

次にパーキンソン病の筋力低下と疾患の重症度との関連を調べるため、対象をヤール重症度IIIにまでひろげ、明らかな症状・機能の左右差を有するパーキンソン病患者23例（男性9例、女性14例、平均年齢61.6歳、平均罹病期間60.4ヶ月）を、ヤール重症度Iの軽症群11例およびヤール重症度IIとIIIの中等症群12例に分類して検討を加えた。筋力測定は上記と同じ方法で、調子の最も良い時間帯（オン時）に行った。ヤール重症度IVおよびVは設定された等速運動を施行するのが困難なため除外した。発作、骨・関節疾患、心疾患、呼吸器疾患、コントロール不良の高血圧症などに有する患者も除外した。その後、全症例での検討では5 r/minと15 r/minのいずれにおいても症状優位側が非優位側に比べ有意に最大筋ピークトルク値が小さかったが、15 r/minにおいてより著明であり、筋力低下が運動速度依存性であることが明らかとして示された（Table 2）。軽症群では5 r/minと15 r/minとも同程度に症状優位側が非優位側に比べ有意に最大筋ピークトルク値が小さかった（Table 2）。一方、中等症群では5 r/minにおいては症状優位側と非優位側との間で最大筋ピークトルク値に有意差を認めなかったのに対して、15 r/minにおいては症状優位側が非優位側に比べ有意に最大筋ピークトルク値が小さかった（Table 2）。以上より、パーキンソン病における上記の運動速度依存性筋力低下は症状の進行とともに著明になることが示された。

続いて、明らかな症状・機能の左右差を有するパーキンソン病患者18例（男性8例、女性10例、平均
Table 2 Maximum peak torque (N·m, mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>More affected side</th>
<th>Less affected side</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients (n = 23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>41.1 ± 21.8</td>
<td>47.9 ± 26.2</td>
</tr>
<tr>
<td>15 r/min</td>
<td>21.8 ± 14.4</td>
<td>29.8 ± 19.9</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>25.5 ± 11.1</td>
<td>30.1 ± 14.5</td>
</tr>
<tr>
<td>15 r/min</td>
<td>17.4 ± 13.7</td>
<td>22.9 ± 13.8</td>
</tr>
<tr>
<td>Mildly affected group (n = 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>33.5 ± 16.3</td>
<td>43.5 ± 24.4</td>
</tr>
<tr>
<td>15 r/min</td>
<td>16.3 ± 10.3</td>
<td>22.4 ± 13.6</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>20.7 ± 8.5</td>
<td>27.7 ± 11.8</td>
</tr>
<tr>
<td>15 r/min</td>
<td>12.2 ± 7.5</td>
<td>18.2 ± 9.5</td>
</tr>
<tr>
<td>Moderately affected group (n = 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>48.1 ± 24.7</td>
<td>51.8 ± 28.2</td>
</tr>
<tr>
<td>15 r/min</td>
<td>27.0 ± 16.1</td>
<td>36.6 ± 22.9</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>29.7 ± 18.6</td>
<td>32.4 ± 16.8</td>
</tr>
<tr>
<td>15 r/min</td>
<td>22.1 ± 16.4</td>
<td>27.3 ± 16.1</td>
</tr>
</tbody>
</table>

NS, not significant

Table 3 Maximum peak torque (N·m, mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>More affected side</th>
<th>Less affected side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yahr stage I group (n = 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>43.8 ± 15.5</td>
<td>54.6 ± 32.1</td>
</tr>
<tr>
<td>15 r/min</td>
<td>22.8 ± 9.8</td>
<td>29.6 ± 15.2</td>
</tr>
<tr>
<td>30 r/min</td>
<td>15.6 ± 7.7</td>
<td>19.3 ± 8.9</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>26.0 ± 8.0</td>
<td>30.1 ± 16.0</td>
</tr>
<tr>
<td>15 r/min</td>
<td>16.3 ± 7.7</td>
<td>22.2 ± 12.1</td>
</tr>
<tr>
<td>30 r/min</td>
<td>11.5 ± 7.1</td>
<td>15.5 ± 7.1</td>
</tr>
<tr>
<td>Yahr stage II group (n = 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>39.6 ± 15.1</td>
<td>48.4 ± 22.5</td>
</tr>
<tr>
<td>15 r/min</td>
<td>24.3 ± 11.1</td>
<td>32.8 ± 17.6</td>
</tr>
<tr>
<td>30 r/min</td>
<td>17.9 ± 11.3</td>
<td>27.0 ± 15.6</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>26.6 ± 11.1</td>
<td>32.5 ± 18.0</td>
</tr>
<tr>
<td>15 r/min</td>
<td>20.3 ± 9.4</td>
<td>26.4 ± 15.9</td>
</tr>
<tr>
<td>30 r/min</td>
<td>16.5 ± 10.8</td>
<td>18.8 ± 13.0</td>
</tr>
<tr>
<td>Yahr stage III group (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>56.3 ± 30.5</td>
<td>60.5 ± 35.7</td>
</tr>
<tr>
<td>15 r/min</td>
<td>31.3 ± 19.5</td>
<td>42.4 ± 28.6</td>
</tr>
<tr>
<td>30 r/min</td>
<td>23.6 ± 15.5</td>
<td>27.9 ± 15.5</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>35.5 ± 23.5</td>
<td>36.7 ± 19.4</td>
</tr>
<tr>
<td>15 r/min</td>
<td>25.9 ± 22.1</td>
<td>31.1 ± 21.6</td>
</tr>
<tr>
<td>30 r/min</td>
<td>16.4 ± 14.9</td>
<td>23.5 ± 16.3</td>
</tr>
</tbody>
</table>

NS, not significant

年齢59.6歳、平均罹病期間72.3ヶ月の重症度をヤーハル重篤度 I (5例)，II (7例) および III (6例) の3段階に分類し、設定速度も5 r/min, 15 r/min および30 r/min の3段階に増して検討した。さらに上記の最大筋ビックトルク値以外に最大筋ビックトルク到達時間（最大筋ビックトルクに到達するまでの時間）も算出した（Fig.1 のC, D）。その結果、ヤーハル重篤度 I 群ではいずれの設定速度においても症状優位側と非優位側との間に最大筋ビックトルク値に有意差を認めなかったのに対し、ヤーハル重篤度 II および III 群では15 r/min において症状優位側が非優位側に比べ最大筋ビックトルク値が小さい傾向にあり、30 r/min においては症状優位側と非優位側に比べに最大筋ビックトルク値が小さかった (Table 3)。また、最大筋ビックトルク到達時間ではすべての群のあらゆる設定速度においても、症状優位側と非優位側との間で有意差を認めなかったことより（Table 4）、torque curve patternは保たれた。

Table 4 Time to maximum peak torque (sec, mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>More affected side</th>
<th>Less affected side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yahr stage I group (n = 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>0.59 ± 0.20</td>
<td>0.72 ± 0.20</td>
</tr>
<tr>
<td>15 r/min</td>
<td>0.20 ± 0.09</td>
<td>0.24 ± 0.11</td>
</tr>
<tr>
<td>30 r/min</td>
<td>0.12 ± 0.05</td>
<td>0.13 ± 0.05</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>1.02 ± 0.35</td>
<td>1.04 ± 0.54</td>
</tr>
<tr>
<td>15 r/min</td>
<td>0.35 ± 0.23</td>
<td>0.47 ± 0.13</td>
</tr>
<tr>
<td>30 r/min</td>
<td>0.14 ± 0.12</td>
<td>0.10 ± 0.06</td>
</tr>
<tr>
<td>Yahr stage II group (n = 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>0.60 ± 0.18</td>
<td>0.66 ± 0.19</td>
</tr>
<tr>
<td>15 r/min</td>
<td>0.27 ± 0.14</td>
<td>0.25 ± 0.09</td>
</tr>
<tr>
<td>30 r/min</td>
<td>0.11 ± 0.03</td>
<td>0.10 ± 0.03</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>0.77 ± 0.32</td>
<td>0.91 ± 0.54</td>
</tr>
<tr>
<td>15 r/min</td>
<td>0.30 ± 0.15</td>
<td>0.34 ± 0.21</td>
</tr>
<tr>
<td>30 r/min</td>
<td>0.13 ± 0.05</td>
<td>0.15 ± 0.08</td>
</tr>
<tr>
<td>Yahr stage III group (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>0.54 ± 0.18</td>
<td>0.67 ± 0.39</td>
</tr>
<tr>
<td>15 r/min</td>
<td>0.18 ± 0.12</td>
<td>0.20 ± 0.09</td>
</tr>
<tr>
<td>30 r/min</td>
<td>0.10 ± 0.04</td>
<td>0.09 ± 0.03</td>
</tr>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 r/min</td>
<td>0.89 ± 0.51</td>
<td>0.97 ± 0.40</td>
</tr>
<tr>
<td>15 r/min</td>
<td>0.25 ± 0.18</td>
<td>0.26 ± 0.14</td>
</tr>
<tr>
<td>30 r/min</td>
<td>0.10 ± 0.05</td>
<td>0.13 ± 0.06</td>
</tr>
</tbody>
</table>

NS, not significant
ていることが確認された。以上より、パーキンソン病におけるこの運動速度依存性筋力低下は、他の因子（無動、筋強直、剤用など）の影響をうけない疾患固有の症候であり、速い運動を遂行するのに必要な十分な筋力を発生させる中枢神経機構の障害によるものであることを提唱したと

V パーキンソン病の筋力に関する最近の研究

Pedersenらは、パーキンソン病患者のon時のoff時の等運動性筋力を比較している。もちろんon時がoff時に比べ筋力は低下しているが、すべての運動速度で同程度に低下していた。健常者とも比較しているが、やはりすべての運動速度で同程度にパーキンソン病患者は筋力が低下しており、われわれのような運動速度依存性の性質は見出していない、Corcosらは、伸筋が屈筋に比べ筋力が低下していると述べ、このことをパーキンソン病の独有の前屈姿勢と結びつけている。しかし、われわれの結果では、伸筋と屈筋の間で一定の傾向は見出せなかった。最大ピクトルク値は同程度で、パーキンソン病ではコントロールに比べ延長するという報告があるが、われわれの報告では症状非優位側と非優位側間に有意な差は認めなかった。この理由は不明だが、等尺性収縮と等運動性収縮の違いによるものかもしれない。

VI 筋力低下は経過とともに質的に変化する

上記の対象患者に対して、平均約5年後に2回目の等運動性筋力測定を1回目と同様の方法で施行し、対象患者ごとに最大ピクトルク値を1回目と2回目で比較・検討した。その際、1回目の筋力測定後の臨床経過からretrospectiveに、対象をA群とB群の2群に分類した。A群は1回目の段階では未治療または治療コントロール不良で、その後治療により臨床症状が改善された群、B群は1回目の段階でより治療コントロール良好であり、その後治療の継続中もかかわらず臨床症状が徐々に悪化した群、とした。その結果、A群では、5 r/minでは症状非優位側、非優位側とも1回目と2回目を比較した場合、最大ピクトルク値に有意な変化は認めなかった。15 r/minでは症状非優位側では1回目と2

| Table 5 Maximum peak torque in group A (N·m, mean ± SD). Maximum peak torque values were compared between the first and the second sessions. |
|---|---|---|
| | First session | Second session |
| 5 r/min | | |
| Less affected side | Extension | 32.1 ± 10.1 | 39.3 ± 4.8 | NS |
| Flexion | 25.5 ± 6.9 | 26.1 ± 4.3 | NS |
| More affected side | Extension | 24.2 ± 12.6 | 34.7 ± 8.7 | NS |
| Flexion | 18.3 ± 6.7 | 20.6 ± 3.5 | NS |
| 15 r/min | | |
| Less affected side | Extension | 17.4 ± 5.8 | 23.3 ± 4.9 | NS |
| Flexion | 17.8 ± 4.7 | 17.0 ± 4.7 | NS |
| More affected side | Extension | 9.9 ± 6.3 | 20.4 ± 8.4 | p<0.01 |
| Flexion | 10.3 ± 4.7 | 15.0 ± 4.8 | p<0.05 |
| NS, not significant |

| Table 6 Maximum peak torque in group B (N·m, mean ± SD). Maximum peak torque values were compared between the first and the second sessions. |
|---|---|---|
| | First session | Second session |
| 5 r/min | | |
| Less affected side | Extension | 51.8 ± 5.4 | 38.7 ± 17.2 | NS |
| Flexion | 28.8 ± 7.7 | 24.7 ± 9.0 | NS |
| More affected side | Extension | 44.0 ± 5.4 | 25.5 ± 7.8 | p<0.05 |
| Flexion | 27.6 ± 5.9 | 16.1 ± 5.9 | p<0.001 |
| 15 r/min | | |
| Less affected side | Extension | 36.0 ± 11.7 | 24.0 ± 11.1 | p<0.05 |
| Flexion | 22.2 ± 7.2 | 18.7 ± 7.8 | NS |
| More affected side | Extension | 27.7 ± 3.2 | 19.1 ± 8.1 | p<0.05 |
| Flexion | 21.4 ± 3.0 | 10.6 ± 3.2 | p<0.01 |
| NS, not significant |
筋ビックトルク値に有意な変化は認めなかったが、慢性的ではなく1回目に比べ2回目では最大筋ビックトルク値が有意に低下していた。また15 r/minでは1回目に比べ2回目では最大筋ビックトルク値が症状を有する再発で非優位側ともに低下していた。すなわち同様な症状を示す再発も1回目に比べ2回目で運動速度に関係のない筋力低下の経過がみられ、非優位側においては運動速度に関連する筋力低下の経過がみられた（Table 6）以上よりバーキンソン病の筋力は発症後、病気の進行とともに運動速度依存性に低下する傾向が示され、この治癒法により運動速度依存性に筋力は改善する。しかし、薬物コントロールが困難になると逆に再発が進行したとされる程度では、無動などの他のバーキンソン症候の影響をうけて、筋力低下は進行する運動速度との関連が乏しくなることを示唆した。

VI まとめ

今回の一連の研究において、バーキンソン病の臨床経過を等運動性筋力の面から検討したところ、発症後に徐々に著明になる運動速度依存性筋力低下は、病気のさらなる進行により無動などの他のバーキンソン症候の影響を受けるため運動速度依存性の性質が消失する質的変化が明らかとなった。これらのこととは、バーキンソン病の運動学的病態生理の解明の手がかりになるものと思われる。

文 献

14）Stelmach GE, Teasdale N, Phillips J.

Muscle Weakness in Parkinson's Disease

Hiroshi NOGAKI

Community and Gerontological Nursing,
Faculty of Health Sciences,
Yamaguchi University School of Medicine,
1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan

SUMMARY

Isokinetic strength of knee extension and flexion was measured in patients with Parkinson's disease, to clarify whether muscle weakness is inherent to the disease. To counteract normal variation among subjects, we selected patients with symptoms completely or largely confined to one side and compared sides for each patient. The affected side was weaker than the other in both slow and fast movements very early in the disease. In more advanced disease, the difference between sides diminished at the slow speed but remained significant at the faster speed. These observations suggest that weakness is inherent to Parkinson's disease and influenced by movement speed.

We compared isokinetic muscle strength between initial and subsequent measurements in patients who could repeat the same testing later. Patients were divided into two groups according to changes in clinical condition between the times of the first and the subsequent measurements. Although isokinetic muscle strength is likely to depend on movement velocity in the early stages of Parkinson's disease, it may be influenced by bradykinesia, as the disease progresses. Speed-force correlation seen in these patients may give clues to the understanding of the pathophysiology of bradykinesia.