Carbapenem-resistant Enterobacteriaceae (CRE) are a growing threat to infectious disease treatment and control (1). Rapid detection of CRE, particularly carbapenemase-producing CRE (CP-CRE), and typing of carbapenemases are important for preventing and controlling outbreaks of CRE (2). GeneXpert® systems have recently been developed for the automated detection of target genes. Integrated with the Xpert Carba-R assay, GeneXpert® systems can detect 5 types of carbapenemase genes (blaIMP-1, blaKPC, blaVIM-2, blaOXA-48, and blanDM) from rectal swabs or isolates in 2 easy steps that can be completed within 1 h (3). However, few studies to verify the accuracy of the Xpert® Carba-R assay have been conducted in North America and Europe (3–5), and no such studies have been conducted in Japan, where the epidemiology of CRE is far different from that in Western countries (6). First, IMP-type carbapenemases are most prevalent in Japan. Although the manufacturer reported high sensitivity of the Xpert® Carba-R assay for blaIMP-1 detection (3), few other studies have confirmed this result. However, several studies have evaluated the sensitivity of the Xpert® Carba-R assay for the detection of other types of carbapenemases. Second, Enterobacter species are the most common CRE in Japan (7), while Klebsiella species are dominant in Western countries (1). Although the manufacturer evaluated the sensitivity of the Xpert® Carba-R assay using Enterobacter strains, the number of tested strains was small (3). The most important challenge for Japanese clinicians is the ability to accurately identify CP-CRE among a large number of carbapenem-resistant Enterobacter isolates. Therefore, the clinical utility of the Xpert® Carba-R assay in Japan remains unclear. Thus, the aim of this study was to evaluate the clinical utility of the Xpert® Carba-R assay using CRE isolated in a university hospital in Japan.

This study included all CRE isolates collected in Keio University Hospital between January 2014 and December 2014. Duplicate isolates collected from the same patient were excluded. We used the following criteria to define CRE, in accordance with the Infectious Diseases Control Law in Japan: minimum inhibitory concentration (MIC) of meropenem was no less than 2 µg/mL, or MIC of imipenem was no less than 2 µg/mL and that of ceftazidime was no less than 64 µg/mL. During the study period, 43 CRE isolates met the inclusion criteria, including 29 Enterobacter isolates, 10 Klebsiella pneumoniae isolates, 2 Escherichia coli isolates, 1 Citrobacter freundii complex isolate, and 1 Serratia marcescens isolate.

CRE isolates stored at −80°C were thawed and cultured on sheep blood agar plates (Nissui, Tokyo, Japan) for 20 h to obtain colonies. Each isolate was cultured on sheep blood agar plates (Nissui, Tokyo, Japan) for 20 h to obtain colonies. Each isolate was electrophoresed using the MCE (Shimadzu), 6.9 m of PCR master mix (Ampdirect Lo fBio TaqTM HS DNA polymerase (Shimadzu), 6.9 µL of H2O, and 1 µL of DNA template. Thermocycling conditions were as follows: 1 cycle at 95°C for 10 min, followed by 30 cycles at 94°C for 15 s, 55°C for 30 s, and 72°C for 30 s, and a final cycle at 72°C for 7 min. The PCR products were electrophoresed using the MCE®-202 MultiNA Microchip Electrophoresis System (Shimadzu).

We calculated the sensitivity and specificity of the Xpert® Carba-R assay for the detection of blaIMP-1, blaKPC, blaOXA-48, blaNDM, and blaVIM-2. The PCR results were used as the reference for the Xpert® Carba-R assay. The study protocol was approved by the Ethics Committee of Keio University School of Medicine.

The results of the Xpert® Carba-R assay and the PCR assay are shown in Table 1. No isolates harbored blanDM, blaKPC, blaOXA-48, or blaVIM-2. PCR analysis identified 14 isolates as positive for blaIMP-1. The

Rapid Detection and Typing of Carbapenemase Genes from Carbapenem-Resistant Enterobacteriaceae Isolates Collected in a Japanese Hospital Using the Xpert Carba-R Assay

Yoshifumi Uwamino1,2, Kayoko Sugita1, Naoki Hasegawa3, Tomoyasu Nishimura3, Hiroshi Fujiwara1, and Satoshi Iwata1

1Center for Infectious Diseases and Infection Control, 2Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-8582; and 3Health Center, Keio University, Kanagawa 223-8521, Japan

Communicated by Keigo Shibayama
Xpert® Carba-R assay identified 13 of these isolates as positive and 1 as negative for blaIMP-1. Thus, the sensitivity and specificity of the Xpert® Carba-R assay for detecting the 5 carbapenemase genes were 92.9% and 100%, respectively, in reference to the conventional PCR assay.

The only carbapenemase gene detected in this study was blaIMP-1. This result is consistent with the findings of a previous epidemiological study of carbapenemases in Japan (7). In Japan, IMP-type carbapenemases are the most prevalent, whereas OXA-48, NDM, and KPC carbapenemases are extremely rare.

Our results indicate that the Xpert® Carba-R assay has high sensitivity and specificity for the detection of carbapenemase genes in CRE. To the best of our knowledge, only 4 previous studies have tested the accuracy of carbapenemase gene detection using the Xpert® system (3–5,12), and strains positive for blaIMP-1 were included in only 2 of those studies. In a multisite prospective study performed by Cepheid Inc. (3), 27 isolates positive for blaIMP-1 were collected from 3 reference laboratories in the United States and Europe. The sensitivity and specificity of the Xpert® Carba-R assay for blaIMP-1 detection were 96.3% and 100%, respectively. In the other study (4), performed in England, the sensitivity of the assay for blIMP detection was very low (71%). The sensitivity in the present study was much higher than that in the latter study.

In the present study, an S. marcescens isolate was identified as positive for blIMP-1 by the conventional PCR assay but not by the Xpert® Carba-R assay. Although the exact cause of this discrepancy is unknown, there are several possibilities. The first possibility is manipulation error; however, the isolate was tested twice using the Xpert® Carba-R assay and 3 times using conventional PCR, so this possibility is unlikely. The second possibility is that the primers for blaIMP-1 used in the Xpert® Carba-R assay and those used for conventional PCR in this study amplify variant IMP-1 carbapenemase genes (8). The final possibility is suboptimal performance of the Xpert® Carba-R assay. Since the complete process of carbapenemase gene detection has not been disclosed by the manufacturer, the efficacy of DNA extraction and amplification is not clear. Despite the discrepancy, we conclude that the Xpert® Carba-R assay may be useful in regions where carbapenem-resistant Enterobacter strains producing IMP-type carbapenemases are most prevalent, such as in Japan.

Conflict of interest The authors wish to thank Cepheid Inc. for supplying the proprietary machinery and kits.

REFERENCES

Table 1. The number of carbapenemase-positive strains of each Enterobacteriaceae species

<table>
<thead>
<tr>
<th>Identification</th>
<th>Number (CRE)</th>
<th>Xpert™ Carba-R</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter cloacae</td>
<td>21</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>10</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enterobacter spp. 1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

1) Enterobacter strains other than E. cloacae and E. aerogenes. No isolates harbored blaNDM, blaOXA-48, or blaVIM-2.