Short Communication

Fusobacterium necrophorum Subsp. *funduliforme* in Tonsils from Various Patient Populations in Japan

Kayoko Hayakawa1*, Maki Nagashima1, Kaichi Ohta2, Norio Ohmagari1, and Niro Tayama3

1Disease Control and Prevention Center and 2Department of Otolaryngology, National Center for Global Health and Medicine, Tokyo 162-8655; and 3Nippon Becton Dickinson Company, Ltd, Tokyo 107-0052, Japan

SUMMARY: *Fusobacterium necrophorum* has recently been suggested to be associated with tonsillopharyngitis, peritonsillar abscess, and recurrent tonsillitis. Between the 2 subspecies of *F. necrophorum*, subsp. *funduliforme* is known to be a major human pathogen. To better understand the epidemiology of *F. necrophorum* subsp. *funduliforme* (FNSF), we studied the prevalence of FNSF in the tonsils of patients undergoing elective tonsillectomy (TE) for different indications. Adult patients who underwent elective TE from October 2014 to November 2015 were included. The tonsils were sent for aerobic and anaerobic tissue culture within 30 min of excision; the presence of FNSF was detected using PCR with *gyrB* primers and 16S rRNA. A total of 32 patients were enrolled. The prevalence of FNSF identified by either culture or *gyrB* PCR did not significantly differ between infectious and noninfectious TE indications. The constant presence of FNSF might not be associated with recurrent pharyngotonsillitis.
p = 0.99). Three RPT patients had positive results for β-hemolytic streptococci: 1 each in Groups A, B, and C/G. Results of FNSF culture and F. necrophorum PCR of the excised tonsil were both positive in a patient with F. necrophorum. Results of FNSF culture and β-hemolytic streptococci: 1 each in Groups A, B, and C/G (p = 0.99). Three RPT patients had positive results for F. necrophorum from excised tonsils among various indications for tonsillectomy. Results of FNSF culture and β-hemolytic streptococci: 1 each in Groups A, B, and C/G (p = 0.99). Three RPT patients had positive results for F. necrophorum from excised tonsils among various indications for tonsillectomy.

Table 1. Comparison between the prevalence of Fusobacterium necrophorum isolated from excised tonsils among various indications for tonsillectomy

<table>
<thead>
<tr>
<th>Indications for tonsillectomy</th>
<th>Total (n = 32)</th>
<th>Recurrent pharyngo tonsillitis (≥ 2 episodes of pharyngo-tonsillitis per year (n = 22))</th>
<th>Persistent episodes for > 1 month (n = 1)</th>
<th>Recurrent peritonsillar abscess (n = 3)</th>
<th>IgA nephropathy (n = 3)</th>
<th>PFAPA syndrome (n = 1)</th>
<th>Sleeping apnea syndrome (n = 1)</th>
<th>Chronic urticaria (n = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture and colony identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. necrophorum</td>
<td>6 (18.8%)</td>
<td>5 (19.2%)</td>
<td>0</td>
<td>1 (100%)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. necrophorum subs. funduliforme</td>
<td>6 (18.8%)</td>
<td>4 (18.2%)</td>
<td>1 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A Streptococcus</td>
<td>1 (3.1%)</td>
<td>1 (4.5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (100%)</td>
<td>0</td>
</tr>
<tr>
<td>Group B Streptococcus</td>
<td>1 (3.1%)</td>
<td>1 (4.5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (100%)</td>
<td>0</td>
</tr>
<tr>
<td>Group C/G Streptococcus</td>
<td>1 (3.1%)</td>
<td>1 (4.5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (100%)</td>
<td>0</td>
</tr>
<tr>
<td>PCR from excised tonsil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. necrophorum (gyrB)</td>
<td>7 (21.9%)</td>
<td>5 (19.2%)</td>
<td>0</td>
<td>1 (100%)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. necrophorum (rpoB)</td>
<td>5 (15.6%)</td>
<td>3 (13.6%)</td>
<td>1 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: PFAPA, periodic fever with aphthous pharyngitis and adenitis.

1: Including the following 3 categories: i) a history of ≥2 episodes of acute pharyngotonsillitis per year, ii) persistent episodes for > 1 month (after infectious mononucleosis due to cytomegalovirus), iii) recurrent peritonsillar abscess.
2: Identified using Rapid ID 32A (bioMérieux SA) with confirmation by sequencing analysis of the 16S rRNA gene.
3: Identified by gyrB sequence analysis.
4: Also positive for FNSF.
5: The excised tonsil was positive for gyrB, but negative for rpoB. F. necrophorum PCR of the culture colony was positive for both gyrB and rpoB. Sequencing analysis of the 16S rRNA gene of the cultured colony revealed the isolate was F. gonidiaformans.

The majority of patients were asymptomatic at the time of elective surgery. Patients with recurrent peritonsillar abscess had active episodes at least a few weeks to 2 months before surgery. A previous study also reported that tonsil cultures obtained during the asymptomatic period from patients with RPT did not show a higher F. necrophorum prevalence than patients without RPT (6). Patients with RPT would likely have a low F. necrophorum prevalence during the asymptomatic phase.

In our study, no patient was undergoing antibiotic treatment at the time of tonsilec- tomy, nor did they receive antibiotic treatment within 1 week. An antibiotic (flomoxef) was preoperatively infused as surgical site.

p = 0.99). Three RPT patients had positive results for β-hemolytic streptococci: 1 each in Groups A, B, and C/G. Results of FNSF culture and F. necrophorum PCR of the excised tonsil were both positive in a patient with RPT after infectious mononucleosis due to cytomegalovirus. No patient had recurrent episodes of pharyngotonsillitis for at least 1 year after surgery.

None of the isolates produced β-lactamase. Except for fluoroquinolone, all isolates had low MICs to β-lactam antibiotics, clindamycin, chloramphenicol, and metronidazole. Three isolates had high MICs to levofloxacin and moxifloxacin (> 8 mg/ml).

Three aspects of this study differ from previous studies: i) inclusion of patients who underwent TE for various indications, ii) identification of subspecies using PCR, and iii) inclusion of patients in Japan. Previous studies revealed a high prevalence of Fusobacterium species in the tonsils of patients with recurrent/chronic pharyngotonsillitis (4,5) and a higher F. necrophorum prevalence in patients with RPT than in those with acute pharyngitis or asymptomatic controls (9,10). However, we found a similar prevalence of FNSF between the RPT group and NID group. Klug et al. also reported similar recovery rates of F. necrophorum from patients with (22%) and without (30%) RPT (6). Bjork et al. reported the prevalence of tonsillar colonization of F. necrophorum in patients who underwent a scheduled TE due to chronic/RPT or recurrent peritonsillar abscess (3). F. necrophorum was prevalent before (28%) and after (16%) surgery based on throat swab cultures, indicating that F. necrophorum is not alone causative of the symptoms (3). Unlike our study, these previous studies used conventional culture methods to identify the F. necrophorum rather than gyrB PCR (4–6,9–11) (one study also used MALDI-TOF, (3)), which might have affected the results of the prevalence of F. necrophorum in each study.
prophylaxis, and the time between antibiotic administration and TE was short. We performed *F. necrophorum* PCR to minimize the effects of administered antibiotics, which revealed similar prevalence in the culture methods.

The only patient with positive FNSF in the NID group had periodic fever adenitis pharyngitis aphthous ulcer (PFAPA) syndrome. Previously, differences in tonsillar microbiota between patients with PFAPA and controls have been suggested, although differences in *F. necrophorum* prevalence have not been reported (12). Further study is necessary to identify the association of PFAPA syndrome with *F. necrophorum*.

In our study, all cultured colonies were identified as FNSF, and no patient had *F. necrophorum* subsp. *necrophorum*. Culture and *F. necrophorum* PCR results of excised tonsils were mostly concordant, except in 2 patients. In 1 patient with RPT, the cultured colony was positive for FNSF, and the excised tonsil was positive for gyrB by PCR, but negative for rpoB. This could be due to the false-negative result of rpoB PCR. In another patient, *F. necrophorum* PCR results of excised tonsil were positive for gyrB, but negative for rpoB; however, *F. necrophorum* PCR results of cultured colony were positive for both gyrB and rpoB. Based on sequencing analysis of the 16S rRNA gene of the cultured colony, the isolate was identified as *F. gonidiaformans*. A previous report tested the rpoB primer for *F. gonidiaformans* ATCC 25563T isolate and suggested a negative result (8). The discordant results might be because we used a clinical *F. gonidiaformans* isolate. In our study, the culture was as sensitive as gyrB PCR detection and more sensitive than rpoB PCR. In a previous study, culture methods identified much lower *F. necrophorum* than gyrB PCR, however, the authors concluded that the anaerobic agar medium used was not very effective for detecting *F. necrophorum* (2). In a more recent study, 1 *F. necrophorum* isolate was detected only by rpoB PCR, whereas 9 other *F. necrophorum* isolates were identified by both rpoB PCR and culture methods (13), suggesting similar findings as our study. The culture methods could be as sensitive as PCR for detecting *F. necrophorum*, if appropriately conducted.

A major limitation of this study is the small number of patients resulting in underpowered statistical analyses, and thus, statistical comparison between RPT and NID should be interpreted accordingly.

Although there have been conflicting reports (9,14), the majority of studies suggested that *F. necrophorum* is most prevalent among cases of pharyngotonsillitis at the age of 15 to 25 yr (14,15). In this study, the cohort with median age of 38 yr (IQR 26–44 yr) might not have reflected the patient population with the highest *F. necrophorum* prevalence.

We did not quantitatively analyze FNSF using real-time PCR. For MIC determination, the broth, not agar, microdilution method was used. Information on recent antimicrobial exposure was collected retrospectively by reviewing the medical charts. Undocumented antimicrobial exposure might have been overlooked, resulting in the underestimation of *F. necrophorum*.

In conclusion, our findings suggest that during the asymptomatic phase, the prevalence of FNSF and β-hemolytic streptococci seems to be similar between the RPT and NID groups. FNSF was present regardless of the indications for TE among the patients who underwent elective TE. The constant presence of *F. necrophorum* might not be necessary for RPT.

Acknowledgments The authors thank the clinical staff of Department of Otolaryngology for their help. This project was supported in part by JSPS KAKENHI Grant Number 26870883.

Conflict of interest This project was supported in part by BD (Nippon Becton Dickinson Company, Ltd), Japan.

REFERENCES

F. necrophorum in Tonsils from Japanese Patients