トロボノイドよりアズレノイドの合成

Synthesis of Azulenoids from Troponoids

野副 鉄男

Tetsuo NOZOE

1. まえがき

古代から医薬の用に供せられたカミツレの花の精油やニガヨモギの油などは、濃い青アイ色ないし緑色を呈するため薬物をかいてきたものであるが、その他にも淡黄色の精油を単に気中で蒸発したり、酸や酸化剤、臭素などと処理だけで青アイ色、紫などに着色するものが割合に多く知られている。すでに1864年、Piesseはニガヨモギの精油の青アイ色を呈するコードを、その濃い色をもってアズレン（Azulene）と名付けた。Schneider（1915）はショウソウ黄色油、その他の精油の青アイ色の留分を濃硫酸やリシン酸と振ると、その色は変色しして膜の層に移り、これを水でうすめると再び有機溶媒の層に移行して、青アイ色にもとどることを見出した。その中アズレンはナフタリン誘導体と同じようにビクリン酸、ステファニ酸、トリニトリベンゼンなどと同様に近い分子構造をもつ、これから容易に精製するアズレンが得られること、クロマトグラフィーで容易に他の成分から分離精製されることなどが明かにしている。従ってアズレンの研究が軌道に乗せた1）。

アズレンの化学の歴史の割合に古く、セスキテルペンを初めとする高級テルペン油の本格的研究の先駆者であるRuzickaおよびその一門の研究者らは、セスキテルペン類のなかには、イオウ、セレン、白金またはパラシウム触媒と加熱脱水素するとカダリオン（1）、オイダリオン（2）のごときナフタリン系炭化水素のほかに、カマツレ、アズレンなどと名付けられたいくつかの青ずい色の油状炭化水素を与える化合物のあることを見出した。

なおRuzickaは、このアズレン類はセスキテルペンとはきわめて関係の密な双環性の炭化水素であるが、後者環状の芳香族環とは異なった特別のring systemをもつものとしてて推定した2）。そしてかれらはアズレンを生成するセスキテルペンの構造研究には、まずこれらのアズレンの構造をきめることが先決問題であると考えた。しかしながらカダリオンやオイダリオンやこれらの系のセスキテルペン類の構造研究に用いた初期の元素分析の方法は、このアズレン類の構造の解明には、それほど有効な手がかりを与えたかった。その後同門のPfluegerおよびPlattner（1936）3）は、アズレン先駆物質であるオマールやオマールなどを脱水素すると、2アズレン、ベチペルペンとともに、ナフタリン系炭化水素を得たのみでなく、いったん脱出したアズレン類をアルミナ上、高圧に蒸発するさいは、ナフタリン同族体に異形化することを認めた。以上の事実、およびこれらの実験から、アズレン類は五員環と七員環の組合した双環性のring system（3）を有するものと考え、アズレンとベチペルペンに対して、それぞれ（4）および（5）の構造を与え、ついて合成（5）によってこの考えの正しいことを検証した。その後、側鎖のない母体の（3）をアズ

1) 第23巻127号 1937年
2) 第24巻127号 1938年
3) 第25巻127号 1939年

*東北大学理学部（仙台市平町75）
当数にのぼるようになった。

II. 従来のアズレンの合成法

合成法のくわしいことは総説にゆずることとして、ここではおおむね合成法をいくつか分類し、おのおのおについて簡単な例をあげてゆくとしよう。

1. オクタリンから十環状のシケトンを経由して得られる双環性の不飽和ケトンを還元するか、またはグリニャール试剂を用いて得られる不飽和炭化水素（R＝H、またはアルキル基）の脱水素による方法である。

2. サンダーラルフナーのアズレン誘導体の合成によってもつアズレン誘導体の合成には適当ない。しかし、双環性炭化水素からアズレン系炭化水素を得るに 300℃以上の脱水素反応を要する事実および、適当な条件を選ぶプタニオンアセチレンのような簡単な鎖状化合物の Cyclopolymerization によって得られる場合があることを考えると、アズレン類は化学的に相当の安定性をもつものといえる。

このようにアズレンの合成法としては、多くの方法が考えられているもの、一般に収率は悪いため、比較的最近までアズレン類はかなり珍しい化合物にすぎなかった。しかし最近になって、Ziegler や Hafner は入手しやすいゴムカーテル成分のビリシンとシクロペンタジェンを原料として、非常に興味があり、かつ実用的なアズレンの新合成法を報告した。ビリシンと 1-ケノール-2,4-ジニトロペンゼンから得られる化合物（6）は芳香族アミン類で処理すると容易に開環してガルタコンジアルデヒドの誘導体になることはすでに Zinke(10)（1904）によって知られているが、Ziegler らはシクロペンタジェンが容易にアルデヒド類と結合してフルベン類を与えることを巧みに利用して、このアルデヒドとシクロペンタジェンの組合せを探す。すなわち（6）をメチルアミンと処理して、ガルタコンジアルデヒドのモノメチルアミッド（7）とし、これにシクロペンタジェンを絡合させて、一種のフルベン（8）として、これを真空中、塩基性の溶媒中で 250℃に加熱して、約 60％の高収率でアズレンの生成することを見出した。

これらの方法はいずれも最後は七員環と五員環からなる双環性の不飽和炭化水素を経て、300℃前後の高温で脱水素する工程を含むため、一般に収率はきわめて

(1) Plattner らの合成

(2) 体炭化水素 (3) は mp 99℃の美しい青色の結晶で、昇華しやすく、香はナフタリンに似ていることは興味がある。

(3) 七員環化合物から発生して、後で五員環を結ぶ方法

(4) 五員環化合物から生成して、七員環を閉環する方法

(5) シクロペンタジェン類より発生し、シアゾ酸アミドまたはシアゾメタンで六員環を拡大してから脱水素する方法

(6) この反応は形式からみると、シクロペンタジェンとビリシンからアミノ酸がとんでアズレンを形づくったことになる。この反応によってアズレンが非常に安価に製造できる見込みがついたばかりでなく、ビリシン誘導体や
トロポロインド類の合成

クロペンサジエンの同族体を用いることができるので、種々のアズレン同族体が得られるようになつた。またアルキル、フェニル、ベンズトリル、ジェチアルミノ基のことを、熱に対して比較的安定な置換基ならば、この合成に耐えるようである。さらにアズレンの4位（および8位）に金属アルキルまたはアルイリが付加するとヒドロアズ culo導体(9)が得られるので、これをクロマニで脱水すれば4位

(11) (12)

端(または8位)にアルキルないしアルリ基のついたアレン類(10)が得られる[11]。このようなにしてアズレン類はもはや、単なる珍しい化合物の域を脱するに至った。

III. 不飽和七員環芳香族化合物

この十数年来、特殊の天然物の研究の端を発して、不飽和環状化合物の化学が急に展開してきた。1940年頃からある種のオーガニックの合成酸化、ステチチン酸や、古くからの薬物に供せられていたイズマフランのアルカロイド、コレヒチンの構造が解決されていっていたところ、Dewar (1945) はこれらの物質が不飽和七員環のエノロール構造を含むのではないか、新しい型の母体構造（シクロヘプタツリエノロン）(11) にトロポロインド（Tro- polone）なる名称を与えた。これに引きついて、1948年頃から欧米においては、松栢類の心材成分、微生物の代謝生成物、イズマフランその他の経緯のエリ科のアルカロイドなど、約20種近くの化合物が、このトロポロインド構造を有することが明らかになった[13]。

他方著者らの研究室においても、欧米の研究とは全く別に、1940年頃からタイワンヒノキ精油の特異体のアルカロイド、ヒノキオール(12)が、不飽和七員環構造を有し、かつもとうしい芳香族的性質を示し、フェネールやアミンと同じ、多くのカチオインド薬性樹皮 Stitched by Friedel-Craftsのアルカラシエン、ニトロ、ヒドロキシメチル、ハロゲンまたはスルホン酸などの各種置換体を与えることを見出した[13]。

1950年ごろから内外のいくつかの研究室において、トロポロインド(13: X = H)、トロポロインド(11)を始めとして、その関連化合物があちうちで合成された。ここに得られたトロポロインド類は、天然トロポロインドと同様、カチオインド置換反応を行う反面、ハロトロポロインド(13: X = ハロゲン)やトロポロインドメチルエーテル類(13: X = OCH3)は種々のアミノインド試薬による置換反応を通じて、新しい各種のトロポロインド誘導体を与える。アミノインド試薬としては、アルカリ、アルコキシド、アルコール、アルミニウム、アルミニウムまたはアルリアルミン、ヒドラジン、シナニなどのほか、有機リチウム化合物やプレニアル薬性が用いられる。これらのア＝ノインド反応にさいして、トロポロインド環はしばしば転位を起し、硝酸ハロゲン誘導体(14: B = 塩基)アルチアル酸誘導体(15)を与える、またプレニアル薬性にさいして、トリアリカルカルビノール(16: Ar はアリール基)などを作ることがあると考えられる[13]。

トロポロインドは酸性を示すほか、トロポロインド、トロポロインドなど（すなわちトロポインド）は塩基性をも有し、強酸によって共役酸カチオン(18)を与えやすい。トロポロインドおよびトロポロインドにおいても(17b: X = H, OH)のようなイオン構造の寄与によって安定化していることは、双極子エネルギー、スペクトル、X線回折の結果からも明らかにされている。

トロポロインドが一般にアミノインド試薬の作用を受けやすいものその特異構造によるものである[14,15]。

これらトロポロインドの特異性（すなわち芳香族性）に関連して比較的最近、アズレン類の芳香族的性質が確認されようになった。アズレンは(19a-c)のような構造式間の共鳴によって安定化し、芳香族的性質を示すものと考えられるが、この予想のとおり、アズレン核の1位

(17a) (17b) (18)

と2位においてジアソカップリング、ニトロ化、ハロゲン化およびFriedel-Crafts反応のアシル化等が行われることが明らかになった[13]。しかしながら七員環が2位ではこの環の置換反応は全く起こらない。

最近まえ、これらアズレン類やトロポロインド類のような不飽和七員環状化合物のそれらの母体であるトロピリ
ウムカリオン（A）が偏在的な塩の形で取り去られ、その
芳香族性が確認され（15）。また他方ではフェロセン（20）
やシゾアゾクレンタジエン（21）のような不飽和五員
環状の芳香族化合物が見出されに至った（15）。ここに六
員環状のベンゼン核（B）をはさんで、五員環（A）と五
員環（C）の芳香族のタイプが
皆そろったことになる。注目すべきことは五員
環の場合はカチ
オンとして安定
化するのに、五
員環の場合はアニオンとして安定化し、いずれの場合に
も中性のベンゼンと同じような 6π 電子系をなしている
ことをである。このことは E. Huckel による分子軌道法
研究の初期において、すでに予想されていた。
さて最近筆者らの研究室において、前に述べたトロポ
ノイド類のアツノイド反応の延長として、ハロトロポ
ンやトロポロンメチルエステルにマロン酸エステル、ア
セト酢酸エステルやシアン酢酸エステルのようなカルボ
アミド、またゲフェン、チオ素、シアン酢酸アミド等を反応させたところ、非常に容易に、今まで知
られていたかかった型のアツノイド誘導体（D: X, X’=
COOR, CN, Y=OH, NH₃）や各種の異環状のアツノ
イド化合物（E: X, Y, Z=CH, N, O, S）が次々と合成で
きるようにになった。このようなにしてトロポイドからア
ツノイドまでを含む広範なトロポイド（Tropoid）の化
学が展開されるに至った（16）。
以下主として筆者らの研究室において、この数年間に
行われたトロポイドより出発するアツノイドの合成
について、ひととおり述べることにする。

IV. 1-オキサ-2アツラノン

2-クロルトロポン（22a: X=Cl）にマロン酸エステル.
アセト酢酸エステル、アセトジカルボン酸エステ
ルなどのナトリウム塩を反応させると（23）、（24）ま
たはそれ類似化合物（15）が得られる。（23）および（24）を
75％塩酸に浸漬すると母体の 1-オキサ-2アツラノ
（25）となる（16）。Reformatsky 反応の条件下で、（22b）
にプロモ酢酸エステルを作用させても（25）が得られ
する（16）。23 および（24）をアルカリとおぞやかに処理
すると環開をおこして、2-トロポロン酢酸（26）および
2-トロポロンアセトン（27）を与える（16）。また

この物質は単なる 7-ラクトンと異なり、アツラノン
の場合と同様な構造（25b）の寄与を持っている。
このことは（25）が二重結合の電子密度（5, 7. D）（16）を有する
こと、Friedel-Crafts 反応によってアツノイド化すれば
（24）を与え、またプロム化、ニトロ化によって 3-位に
置換をうけることからもわかる（16）。3-ニトロ置換体は直
接 2-クロルトロポンにニトロ酢酸エステルを絡合させ
ても得られる。このものを還元して得られる 3-アミノ
化合物（28）は、芳香族のアミノ類と同様に、Sandmeyer
反応で 3-位にホスゲンを入れることもできる（16）。また

（24）をベンズアルデヒド誘導体と絡合させると種々
のジンナマー誘導体（29）を与える。

（22a）および（22 b）のアルキル、またはその他の置
換体にアルコールの存在の下で、マロン酸、アセト
酸、ニトロ酢酸等のエステルを作用させると、種々の 1-
オキサ-2アツラノン誘導体が合成される。ただし 2-ハ
ロトロポン誘導体の場合には、反応条件によっては、異
常置換を起すことがわたった。たとえば 2,5-ジクロル
トロポンと p-ニトロフェニル酢酸エステルを、ベンゼ
ン溶液中で絡合させるとき異常置換によって 5-クロ
ール誘導体（30）のみが得られるのに、2-メトキシ-5-クロ
ルトロポンのベンゼン溶液では正常置換の結果、6-クロ
ール誘導体（31）を与える。ただし後者の場合でもベンゼ
トロポノイドおよびアズラノイドの合成

1-オキサ-2-アズラノン（25）はアンモニアによって、主として閉環し、2-トロポニール酸アミドを与えるのに、3-フェニル誘導体の場合には1-アツ-2-アズラノン誘導体（32）を与える。

V. 1, 3-チアツ-2-アズラノン

2-クルロトリホン（22a）にチオ尿素を添加すると、1,3-チアツ-2-アズラノンのイミノ誘導体（33）を与える。これを塩酸と加熱して加水分解するとアンモニアを出して（34）を与える。これらの化合物は各種の分子化合物をつくりやすく、また興味深い生理活性を示す。またヒキチオールから出発して、同様の方法によって、イソプロピル基の2位と7位にある2種類のシナメール（35）、ケトン（36）が得られている。

IV. 1-アツアズレン

1. 2-アミノトリホンよりアルコールの存在の下に、2-アミノトリホン（37）に市販の酸アミドを作用させると（38）を与え、これを脱水剤と加熱して加水分解、脱酸化すると1-アツ-2-アズラノン（39a）を得られる。この化合物の紫外スペクトルは後述の1-アツ-2-クロルアズレン（40）よりも、前に述べた1-オキサ-2-アズラノン（25）のそれと似ていることから（39b）よりも主として（39a）として存在するものと考えられる。

2. トロポノイドにシアン酸アミドの作用 2-クロル-または2-メトキシトリホンに室温でアルコールの存在の下に、シアン酸アミドを作用させると少量のアズレン誘導体（50）のほかに、主として3-シアノ-1-アツ-2-アズラノン（51）が得られる。このものをPOCl₃で処理して得られる2-クロル誘導体（52）から
さらに種々の置換体が導かれる(59)。

トロポロンのアルキル、その他の誘導体を原料としてこの合成法を応用すれば、七員環の八にもまた各種の置換基をもった誘導体が得られる。しかしこの場合注意を要するのは、原料が 2-クロルか 2-メトキシトロポロンかによって、また七員環の置換基の立体効果によって、五員環を結ぶ位置が異なることである。たとえば 4-メチルトロポロンから得られる二種類のメチルエステル(53a)および(53b)にそれぞれ、シアン酸アミドを作用させると異なった生成物(54a)と(54b)が得られる。これらの生成物は、アミトロポロン(55a)およびその異性体(55b)とマロン酸エステルの組合せにて得られる構造のたとえ 7-メチル-1-アザ-2-アズラノン(56a)およびその異性体(56b)とそれぞれ関係づけることによって、その構造が確認された(52)。

このようないくつかの実験結果から、一般にトロポロンメチルエステルのメチル基をついた炭素原子に酢酸エステルの活性メチル基が結合し、かつカルボニル基とアミノ基が結合して、第二の環のできることがわかった(53)。

上述の場合と同じような方法で、生成物の構造をしばしば 2-クロルトロポロンのメチル同族体の場合には原則的に異常置換反応を起こすことが知られた(54b)。しかし、メチルエステル(55)でありながら異常置換による生成物(57)を与える場合や(55b)，クロルトロポロン(58)でありながら正常置換による生成物(59)を与える場合もある。

これらの生成物の置換基(アルキル基)の位置は、CH の赤外吸収の位置からある程度知ることが出来る(55b)。

Cook(54) はいサフラノのアルカロイドであるコルヒチン(60a)に NaOCH(54) の存在の下に、シアン酸アミドを作用させて、C3H5O4N3Cl に相当するトウ黄色の結合体を得ている。この当時コルヒチンのトロポロン構造がまだ知られていなかったのであるが、上に述べたわれわれの研究結果から考えて、この結合物に(61)の構造が与えられることがある。

[図]

最近われわれはコルヒチン(60a) およびその異性体(60b)にシアン酸エチルを働きあげたところ、前者からはアゾアズレン誘導体(61)とアズレン誘導体(62)と考えられる生成物を得たのに、後者からは王としてアズレン(62)と考えられる生成物が得られるのを認めた(51)。

3. インドール合成法の応用 2-ヒドラジントロポロンとフェニルアセトアルデヒドの縮合体(53)に Fischer のインドール合成法を応用すると、3-フェニルインドール合成体(64)が得られる。
トロポホイドよりもアズレノイドの合成

503

コードトロホンが（64）得られる。これにPOCl₃を作用させると8-フロル化合物（65）を生じ、これからヒドラゾン化合物を経て、母体の3-フェニル-1-アズレレン（66）が導かれた（71）。また（64）にSOCl₂を作用させると、同時に2-位のクロル化をともなって2,3-ヒドロキシ化合物（67）を与え、（65）や（67）からアニュライド変換によって多くの誘導体がつくることができる（72）。

カルバゾール合成法の応用 2-ヒドラゾントロポンとシクロヘキサノンの縮合体（68）を淡硫酸とあたためると、Borscheのカルバゾール合成の場合と同じように、ピロール環を結んで（69）を与える。このものはクロラミで脱水素するとインドトロホン（70）となり、これから（71）および（72）を経て、ベンゾアツアツレン（73）および多くの誘導体が導かれる。スペアのヒドラゾン（74）を用いると（75）が得られる（73）。

VII. 1,2-ジアツアツレン

3-ホルミルトリホン（76）または7-ホルミルヒソキシオール（77）にヒドラゾンを作用させると、ピラゾトリホン（78）を与え、これをPOCl₃と作用させると1,2-ジアツアツレン誘導体（79）が得られる（74）。

4-オキシトロホン（80）や2-ハロトリホンなどにシアソメタンを作用させてもピラゾトリホン誘導体（81）（82）を与え、（77）にヒドラゾンを作用させても同様にピラゾトリホン誘導体（83）を与える（74）。

VIII. 1,3-ジアツアツレン

アルカリまたはアルコールの存在の下にトリホンメチルエーテルとジアソニウム塩を熱すると、好収率で2-アミノ（84）および2-メルカプト-1,3-ジアツアツレン（85）が得られる（26a,b）。塩素は普通、分子化合物を与えるのみで結合しない（26a,b）。

（84）を濃塩酸で加水分解すると、（85）を酸化水銀で脱硫すれば2-オキシ化合物（86）を与える（26a,b）。このものはエノール型（86a）のほかケトン型（86b）すなわち1,3-ジアツアツレンとして反応にあずかず、その紫外吸収スペクトルからみると、むしろ（86b）として存在すると考えられる（26a,b）。

（85）を硝酸または過酸化水素で酸化すると、塩体の1,3-ジアツアツレン（87）が得られる（26b）。このものは大きな双極子能率（4.03 D）を有することから、（87b）のごとく構造の寄与の大きいことがわかる（26b）。この場合電子密度の大きな1位および3位は共に酸素原子で占められているので、カチオニード置換は起こらない。しかしトリホンのアルキル、アリール誘導体や、ハロゲン、ニトロなどの各種置換体を用いることによって、多くの1,3-ジアツアツレンの誘導体が合成されている（74）。オキシ化合物（86）にPOCl₃を塩環境で得られるクロル化合物（88：X＝Cl）またはメルカプト化合物（89）にモノクロル酸を作用させて得られる（89）にアンモニア、アミン、ヒドラゾン等を塩着させると種々の2-置換体（88）が得られる（26a,b,c）。

X＝Cl, NH₂, -NHR, -NH₂, -NH₂ NH₄, etc.
1,3-ジアザアズレン類の生成に関して、注目されていることとは、小測のところ2-ハロトロポロンにオキシ尿素を反応させるとき、トリポロンのメチルエーテルの場合と同様て1,3-ジアザアズレン類が与えることができる19)。

2-アミノ化合物(84)は亜硝酸に対し、芳香族第一アミンの特性を示さず、結晶性の塩を与えるがすぎない。しかし6位にアミノまたは水酸基を有する2-アミノ化合物、例えば(90)は亜硝酸によってジアゾ化され、β-ナフトールとカップルしてアゾ色素(101)を与える19)。

母体1,3-ジアザアズレン(87)はSchotten-Baumann法でベンゾイル化を試みると、一度環を開いて(92)となり、再び容易に閉環して2-フェニル誘導体(93)となる19)。

XI. 1,2,3-トリアザアズレン

ニトロトロポロン(96)にヒドロキシルアミンを働きかせて生ずるトリニトロトロニキシン(97)を避光学すると、全く酸素を含まない七員環状化合物2,5-ジアミノニトロポニオン(98)が得られる29)。このものは結合中で亜硝酸ナトリウムと反応して6-アミノ-1,2,3-トリアザアズレン(99)を与える。この化合物は第一アミン(99a)としてよりも、むしろトリアゾロトロポニオン(99b)として反応を行い、炭、アルカリに熱すると加水分解して、トリアゾロトロポロン(100)を与える29)。

4-メチルトロポロンやローヨンリシンのニトロ化化合物からも同様なトリアザアズレンが導かれる29)。(98)にキ酸や酢酸を作用させると、6-アミノ-1,3-ジアザアズレン(101)(102)が得られる29)。

さらに(105)はCN, OH, COOC₂H₅を有しアズレン誘導体であることがわかった。

トロポロンメチルエーテルに同様、シアン酸エステルを働かせるとmp 168℃のトウ黄色結晶(108)(104)以外に、主に酸性物質(109)が得られる。また2-クロルトロンにマロンントリルを作用させるとトウ黄色のシシアノアミノアズレン(110)が得られる29)。2-クロルトロンおよびトロポロンメチルエーテルにシアン酸アミドを作用させた場合、一部アズレン誘導体(50)。
トロボノイドよりアズレノイドの合成

2-アミノアズレン（106）に亜硝酸を加えると、色は緑からニッケルに変化し、一定の生成物を絶対的に取出すことができるが、（104）の塩酸塩に亜硝酸を作用させると、容易に2-アミノ基がクロルに置換して赤色化合物（111）を与える。これを水分解して脱炭酸すると、紫色の2-クロルアズレンを形成するが（105），条件によっては、3-エトキシカルボニル-2-クロルアズレン（112）を与える（106）。この洗剤原料はHBr，HIによって、臭素またはヨウ素原子によって交換できるが、アルゴン、アセチル、アミノおよびヒドロリン、その他フラン酸エステル、シアノ酸エステル、セレニト酸エステルのような各種のアミノイド試薬の作用によって、多くの新しい2-置換アズレン誘導体（113）が作られるようになる（107）。

アズレンはトロボノイドの場合と同様に、イオン構造（114 a，b）の寄与によって安定化し、C₄とC₅の二つの位置はカルボニル置換反応によって、クロル、ブロム、アセチル、ニトロ、アゾ、アミノ塩酸塩を入れることができる（115）のごとき誘導体が得られる。またベンサレメヒドと総合することもできる（108）。

さらにアズレンに対しアミノ基を置換した場合、ジメチルホルムアミドによる希釈化も容易に行われることが見出された（109）。これらの化合物から次々と新しい誘導体が導かれることもある。

アズレンの七員環の方は電子密度が低いから、一般にカルボニル反応によって置換基を入れることはできないが、初めからアルコール、アルデヒド、アミン、ニトロ基の置換基をもつトロボノイドを用いれば、七員環上に種々の置換基をもつアズレン類を容易に得ることができる。

われわれのアズレン合成法の特徴は、低温度で好収率に一挙にアズレン誘導体の得られることが、熱により官能基を含んだものも容易に合成できることである。すなわち後から加工できるアミノ、ヒドロキシル基が入れられていても、後からはどうしても入れることのできない位置にそれらの官能基をもつ化合物を作ることができる。

2. 新合成法の各種トロボノイド誘導体に対する応用

上記のアズレン合成法は各種トロボノイド誘導体に応用されるが、生成物の構造や種類はいろいろな条件、たとえばトロボノイドの構造や総合剤の種類、量、溶媒などによって支配される。

ヒマチオールのメチルエステル（116 a，116 b）にアルコールの存在下、シアノ酸エステルを作用させると（117），（118）および酸性物質（119）が得られる（110）。これからの生成物の割合はアルコールの量によっていちじるしく変わる（111）。さらに前に述べたように、脱アミノ、加水分解、脱炭酸を行ったところ、予想のごとく5-イソプロピルアズレン（120）が得られた（112）。

ここに得られた種々のアズレン誘導体は意外に安定である。

次にメチルエステル（116 a，116 b）から、別にヒドロキシル化合物を総合して得られる二つのクロロイソプロピルトロボノイド（121）（122）のうち、前者（121）に対しシアノ酸エステルを作用させたところ、70%以上の収率で総合体（123）が得られ、これから6-イソプロピルアズレン（124）が得られる（113）。この場合にも明らかに「異常総合反応」を示し、2 mol のシアノ酸エステルはカルボニルの炭素と C₄ の炭素のところで五員環を結んだこ
とがわかる。この傾向はトロボノイドの反応において、しばしば見られるもので、クロルトロボンの反応としてこの種のCine 反応はむしろ優先的に起こるようである。これに反し、他の異性体(122)は同じようにシアン酢酸エステルと反応させても、(123)に相当する生成物は得られず複雑な混合物（5,6種類）を与える。

これらの7位が極めてイソプロピル基からの立体障害のために、試薬の攻撃が行われにくく、やむをえず他の反応が起こったのである。その構造にはイソプロピル基のかわりにメチル基のはいったクロルトロボン(125)の場合には、数々の反応生成物のうち、5％ほど正常置換による5-メチルアミノ誘導体(126)が得られている。

またアミルアミンを合成する目的で、7-メチルヒロキシチオール(127)のメチルエーテルにシアン酢酸エステルを反応させたところ、目的の化合物(128)の生成はごくわずかで、他は酸を絡まないトロボン誘導体が得られた。

2,4-ジプロモトロボン(129a)の場合にも、Cine 置換によって6-プロムアミン誘導体(130)が得られた。130）はまた5-プロム-2-メトキシトロボン(129b)にシアン酢酸エステルを縮合させるか前述の(104)を水酢酸中で臭素化しても得られるのは興味あることである。104）の2位のアミノ基が

2,7-ジプロモトロボン(131)の場合には、シアン酢酸エステルの作用によっては、アミン誘導体は全く得られず転移生成物(132),(133)の2種類が得られる。

前にのべた2-クロルトロボンとシアン酢酸エステルの反応のさいの無色の副産物(103)はこの(133)の臭素のとれた化合物に相当している。この種の帯域反応はハロトロボンの反応にさいしばしば見られるところ、たとえば(131)をエタノール性アルカリ、またはアンモニアで処理するとプロムサルファルデヒド(134)を与えることが知られている。このさいアミノイド試薬はトロボン核のC3を攻撃したものと考えられる。上のアミリン合成の試みの場合も、試薬が直接C3を攻撃したものか、あるいは一度できたサルファルデヒドに試薬が二次的に反応したものと考えている。

3. 反応機構の考察 今まで述べてきたアミンの新しい合成法の機構について、いささかの研究が行われているが、反応生成物が相当複雑であり、かつ反応の中間体と考えられるような化合物が得られていないが、一撃で最終生成物になるため、今のところ確実なことはいえない段階にある。

この反応はそもそもハロトロボンとマロン酸エステルの反応で1-オキサ-2-アザラノン誘導体(23)が得られるのと同じように、シアン酢酸エステルを用いれば、3-シノル1-オキサ-2-アザラノンが得られるであろうことを予想して行われたものである。

ところで、アミリンの生成にさいして、1 mol のトロボノイドに対し2 mol のシアン酸アミドが反応にあずかり、たとえ1:1の割合で反応させても、1:2でもしくはアミド誘導体に変わってしまう。また生成したアミリンに関しても、C3 と 2C3には COOC2H5 か CN のいずれかがつき、C3 には OH または NH2 のいずれかのついたような、いささかの組合せのアミン誘導体が得られている。

この反応において、2 mol のシアン酸アミドがダイマーの形(135)で作用するのかどうかを確かめるために、1-クロルトロボンと(135)を反応させたが、1-オキサ-2-アザラノン誘導体(136), 1-アザラノン誘導体(137), mp 197℃の構造不明物質を取り出した。
トロポノイドよりアズレン誘導体の合成

で、アズレン誘導体は全く得られなかった

\[
\text{ROOC-CH-CN} + \text{C≡N} \rightarrow \text{ROOC-CH-CN} \text{C≡N} \text{CH₂COOR}
\]

\[
\text{Se-アキシレン} \quad \text{カゼレン} \quad \text{ラクタレン}
\]

\[
\text{ラフィロビオリン} \quad \text{チュラレン} \quad \text{リンクラレン}
\]

\[
\text{アルテマレン}
\]

上のような事実を考えると、トロポノイドにまぎ \(1 \text{ mol} \) のシアン酸エステルが反応すると、モルのトロポノイドよりかえって活性で、ただちに第2の試薬が作用して、(138) および (139) のごとき中間体が反応するもののと推定される。これらが一種の Ziegler 程度を起し五員環を形成すると、二重結合の中間体 (140) または (141) をえる。これらの中間体は 2 位のカルボニルまたはイミニルの極性化の影響と、3 位についているエトキシカルボニル基またはシアン基がエトキシル基の攻撃をうけて、(142) (143) のごとき第 3 の中間体を経て、C-C 間の結合の開裂を起し、最終生成物 (104), (105), (108), (109) をえるものと推定される。このように中間体が全く得られず、一部にアズレン誘導体が得られるには、アズレン環生成の driving force が

\[
\begin{align*}
\text{HO}_{2} \text{C-CH-CN} & \rightarrow \text{HO}_{2} \text{C-CH-CN} + \text{NC} \text{COOR} \\
\end{align*}
\]

\[
\text{(142) または (108) (105) または (109)}
\]

いかに大きなものであるかを示すものである。

4. アズレン先駆物質合成の試み 天然産の アズレン類および、セスキテルペンイドなどの天然のアズレン先駆物質（アズレノーゲン）の脱水素で得られるアズレン類としては、前述のグアキシレン (4), ベチバレン

色結晶 (147) が得られ、このものが亜硝酸で脱アミノ化を試みたところ、予想される脱アミノ化合物 (148) の少量と、mp 86°C のだいだい色結晶
XI. むすび

以上述べてきたように、アズレン系化合物はその美しさのため古くから注目され、またその特異な構造と色の関係や、天然物との関係から多くの化学者の研究の対象となってきた。しかし最近になってまでアズレン類の合成法は、最後の段階において高温の亜硫酸反応をうけなければならず、その収率はきわめて悪いものであった。したがって、段々と工夫改良がなされたとはいえ、アズレン類は比較的最近まで実験室における珍らしいサンプルの域を越しなかっただけだった。しかしながら最近のZieglerらによる理想的な合成法の発明によって、アズレン系炭化水素は急に得やすい原料となり、またカルチオノイド反応等によってある程度新しい誘導体が必要されるようになった。

他方筆者らの研究室において完成されたアズレン誘導体の合成法は、原料として今のことご手頭困難なトリボロン類を用いる難点はあるが、室温において好収率に、しかも一挙に複雑なアズレン誘導体を得る利点を有する。この方法を利用すれば、芳香族異面環状化合物の合成知られているような、すべてのタイプのアズレン誘導体の合成が可能となるといえども余念ではない。そして今後合成されるであろうとこの多くのアズレン系化合物のなかには、単に純粋化学上のみならず生物学、医学、その他の応用面において興味のもつれる化合物が複数見出されるであろうことが予想される。しかしこのようなためには、さらに有利なトポロイドの合成法の見出されることを望んでいる。

ここ最近、石炭タールの成分シクロペンタジェン(150)とアセチレンの縮合体としてシクロヘプタジェン(151)を470℃に熱しただけでトロピリビン(152)にすることが見出された。トロピリビンのジプロムドを加熱すると

\[\text{CH} + CH_2 \rightarrow (150) \rightarrow (151) \rightarrow (152) \]

とトリピリウムカチオン(153)になるし14)。また(152)を過マンガン酸カリウムで酸化すると、収率は悪いが、トロピロンの得られることも知られている。

また最近トリピロンやキシレンにエレクトロン衝撃を加えると、側鎖の1つの炭素原子が六員環内に入れてトリピリウムカチオン(153)やそのメチル同族体(154)の生成されることもわかってきた19)。もしこれらの方法がトリピロンやトリピロンの合成に利用できるようになられば、トポロイドやアズレノイドの化学的、ならびにその応用的研究が一段と開拓されることが想像される。

文 献
2) H. Pommer : Angew. Chem. 62, 281 (1950)
3) M. Gordon : Chem. Revs. 50, 127 (1952)
5) 奥田: 同上 38 (昭和30)
6) W. Treibs : Pharmac. 11, 95 (1956)
7) E. Bajus : ibid. 11, 179 (1956)
8) H. K. Thomas : Pharm. Ind. 18, 89 (1956)
11) A. St. Pfau, Pl. A. Plattner : ibid. 19, 853 (1936)
12) Pl. A. Plattner, A. St. Pfau : ibid. 20, 224 (1937)
5) Pl. A. Pfau : ibid. 24, 283 (1941)
15) Pl. A. Plattner, J. Wyss : ibid. 25, 1432 (1946)
17) K. Ziegler, K. Hafner : Z. Angew. Chem. 67, 301 (1955)
18) T. Th. Zincke : Ann. 333, 296 (1904)
19) K. Hafner, H. Welde : Z. Angew. Chem. 67, 302 (1905)
12a) J. Chopin : Bull. soc. chim. France 1951, D57
b) G. Huber : Angew. Chem. 53, 501 (1951)
c) A. W. Johnson : J. Chem. Soc. 1954, 1331
d) L. P. Pauson : Chem. Revs. 55, 9 (1955)
e) F. Santavy : Chem. Listy 47, 1534 (1953)
f) F. Santavy : Chemische Technik 8, 316, 445, 512 (1956)
13a) 野村: 化学と工業 (日化) 4, 348 (1951); 7, 378, 413 (1954)
c) 野村: Festchrift Arthur Stoll (Birkhauser A. G.) Basel (1957)
I. G. 社における有機工業分析法

日本分析化学会編
B 5版, 207頁, 価 480 円
1957年1月, 丸善

P B リポートによるドイツ特に I. G. の有機合成技術に関しては, 29 年度当協会におい
て「ドイツ有機合成技術」I, II の二巻にまとめて紹介を加えて行っている。これと同様に,
本年度も P. B. リポート中発表された I. G. の有機工業薬品
の新着, 分析方法を探し, 本法の形式で出版した。

リポートもわが国において重視されてから相当の時を経過し, 今さらという感がないで
はないが, 官方発表の序文にもあるように, 分析方法の観察にとどまらず, I. G. におけ
る化学分析研究に対する精神をあらわして行くという点で本書の発行も意義があるのである。

本書は5編よりなり, 第1編は全体を大要する試験方法の全部を収録し, 第2編には原料薬品類, 一部薬品の規
定, 許容限度および試験法をあげている。ここに採りあげた654薬品は品目により, 第2編の I. G. の規格をあげ
た所には代表的と思われん383 薬品を絞っている。本書の著者および試験にはそれぞれの専門家が考, 訳語も丁寧で
あり, 随所に誤者による誤者による訳訳を加え, さらに新しい方法を附加加えられ, 諸者に対する便宜が充分考慮され
ている。有機化学者間の研究に従事している技術者には一読する価値のある書物である。しかしこのような良書にも欠
点がないわけではない。時には, アルキル酸化セラウス塩と普通に使用されている薬品を脂肪アルコールアルセロロン酸塩と
誤しているような点が見受けられ, 諸者を混乱させるおそれがある。できるだけ早い機会にこのような, 訳語を改めら
れ完璧に刊をいただきたい。 (後藤照三)