合成高分子化合物の有機化学反応

Organic Reactions of Synthetic High Molecular Compounds

井本 稔*
Minoru IMOTO

総説

低分子化合物の領域における有機反応になるって置換、脱離、付加などの反応に分類することができるが、さらに主鎖の反応（Pₘ）、側鎖の反応（Pₖ）、末端基の反応（Pₑ）に大きくわけられる。この稿では天然高分子（繊維素、天然ゴム、タンパク質）に触れない。それらは古くからあまり多く研究されていて、ここで簡単に述べることができないからである。本稿での分類は次のとおりである。しかしこれが反応理論からみて正しいかどうかはなお明らかであると想えな。

1. 置換反応（S）: 1.1 等重合度置換（PₘS，PₛS，PₖS）
 1.2 グラフトおよびブロック重合（PₘS，PₛS，PₖS）
 1.3 主鎖の加水分解（PₘS）
2. 脱離反応（E）: 2.1 等重合度脱離（PₛE）
 2.2 高分子の崩壊（PₖE）
3. 付加反応
4. 三次元化反応（PₘS，PₛS）

1.1 等重合度置換

等重合度置換 polymeranalogous substitution で重合度の変化を伴わない置換反応を総合する。等重合度脱離をのぞくと、他のすべての反応は重合度の増大または減少を伴う。竹本、黄らがまとめている。

(1) ポリエチレンの置換反応
 i) ハロゲン化
 CCl₄，CHCl₃，C₂H₆Cl₂，C₂H₄Cl₄，高級パラフィン，CCl₄-CHCl₃などの溶媒中でCl₂処理し、低温ないし高温で Cl%66.8 までのものが得られる。

*大阪市立大学理工学部（大阪市北区南長岡 12）

**Pₘ は高分子化合物を P で示し、main chain を M で示す。S は side chain，E は end group である。

光をあてると 76% のものができる。臭素化，フッ素化もできる。フッ素を 75.6% 含むものが得られ、それらはテフロンと類似しているという。塩素化ポリエチレンはアルカリ，第 2 級アミン，AlCl₃ などで架橋化しゲル化する。また過酸化物もその作用がある。

ポリイソブチレンの塩素化の特許がある。CCl₄，中でヨウ素の存在で Cl%24 のものに、光をあてて 50% のものに塩素化される。

ii) クロロプロキシネチル化
 ポリエチレンを CCl₄に浸かし，60～70℃で SO₢と Cl₂を 6 hr にする。または塩
 融ポリエチレンを SO₢と Cl₂とを吹込む。触媒にプロピエンソブチルアミドそのほかのラジカル発生剤を使用する特許がある。du Pont 社の合成ゴム Hypalon は
 S%1.5，Cl%27.5 であるが，Smook らの赤外線による
 構造研究によても，次式のごとく考えられる。

\[
\begin{align*}
\text{C}_n\text{Cl}_m\text{SOCl}_n \rightarrow \cdots \text{CH} = \text{CH} = \text{CH} = \text{CH} \cdots \\
\text{SOCl}_n \text{ Cl} \\
\end{align*}
\]

ハイポロンの SO₢Clₙ基は NH₃によって SO₢NH₃基
になる。ポリイソブチレンも SO₢と Clₙとで同様の変化をうける。

(2) ポリ塩化ビニルの置換反応
 i) 水素化
 たとえばポリ塩化ビニル（PVC）5 g をテトラヒドロフラン 300 cc に溶解し，AlH₃ 2.0 g，LiAlH₄ 0.5 g を加え N₂中に 14 hr 接触して Cl を H に変えた。または
 PVC 13.3 g，LiAlH₄ 13.3 g を空気中でテトラヒドロフランを溶媒として加熱して 316 hr で 97% の Cl が H になった。この Cotman の得た炭化水素を，ポリエチレンの場合とまったく同じように，赤外線にかけて，も
 との PVC は大枝や小枝があることが証明されたので
 ある。同じような還元の報告は同時にドイツでも
た。

最近にも Batzer らがくわしく報告した。それによると LiAlH₄ による還元では、N₂ 中では重合度の低下はないが、空気中では低下する。また濃酸亜鉛製品と乳化重合製品と本質的には差異はないが、後者の方がいくぶん重合度を低下させる傾向が強い。なお還元の場合には Cl⁻が10%以下にならるとテトラヒドロフランに溶けなくなるのでデカリンを追加する。さらにテトラヒドロフランをジオキサンと置きかえる。

ii) ハロゲン化 PVC の塩素化は主として L.G. で発展し Igelit PC の名で製造され、アセトンを溶媒として Pe-CE 縦維として溶液塩素化された。PVC に比べて酸化点も耐 HNO₃ 性も向上し、エステル、ケトン、塩素化パラフィンにも溶けるようになる。

製法) 四化炭素に PVC を 7〜8%に溶かし 90℃で Cl₂ を通す。反应は発熱する。反応ガスの内張りは鉱、ジャケットに通す 120℃以上になるのを防ぐ。24〜40時間で終了する。冷却し、減圧で HCl を除去し、-10℃にブレインで冷し、メタノールを加えて析出させる。ロ過、メタノールで洗浄し回転ドライヤー乾燥機で乾かせる。他にクロロホルム中、10%希薄に懸濁させて 4atm, 92℃でクロル化させる方法があるが工業化されなかったという。Cl⁻は56%から 62〜65%になる。

大江氏のくわしい研究がある)。Marvel らも Zn で脱塩素したものもさらに塩素化した。その他 (文献 47) Seipold は X線解析から塩素化した PVC に構造 1 の可能性があると述べたが、大江氏の示す方法は 2 の方法を採用する。最近に Fuchs らも X線や赤外線を用いて調べ A=50%を算出した。A < 50% ならば 1 の (CH₂=CCl)₈⁻ であり、A ≅ 50% ならば 1 の (CH₂=CHCl)₈⁻ である。実験の結果左表を得た (PVC で Cl⁻56.8%, 1 で 72.6% である)。しかし

<table>
<thead>
<tr>
<th>Cl⁻%</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.1</td>
<td>35.5</td>
</tr>
<tr>
<td>66.7</td>
<td>29.0</td>
</tr>
<tr>
<td>71.8</td>
<td>19.0</td>
</tr>
<tr>
<td>73.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

の反応は Cl⁻ の 3.5%がおこしたのみであった。この反応自体にもまた結論は明確となされない点が多いが、要するに Fuchs らも 1 か 2 の断定はなされなかったようである。

表 1 PVC のフリーデル・クラフツ反応

<table>
<thead>
<tr>
<th>反応物</th>
<th>AlCl₃</th>
<th>溫度</th>
<th>時間</th>
<th>Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>トルエン</td>
<td>25cc</td>
<td>0.25</td>
<td>20</td>
<td>43.3</td>
</tr>
<tr>
<td>トルエン</td>
<td>1.0</td>
<td>20</td>
<td>5.1</td>
<td>0.10</td>
</tr>
<tr>
<td>トルエン</td>
<td>1.0</td>
<td>0</td>
<td>16.0</td>
<td>0.17</td>
</tr>
<tr>
<td>HCl-キレン</td>
<td>1.0</td>
<td>25</td>
<td>15</td>
<td>20.7</td>
</tr>
<tr>
<td>メチレン</td>
<td>28</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ペンゼン</td>
<td>7</td>
<td>11.6</td>
<td>ゲル化</td>
<td></td>
</tr>
<tr>
<td>ナフタリン</td>
<td>45</td>
<td>11.5</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

* (CH₂=CHCl)→単位に対するモル比

またペンゼンとの反応物では主として

CH₂=CH·CH₂→CH₂=CH·CH₂

のにとく定量されました。式の下の%はペンゼン核の結合割合である。表 1 の結果の示すように橋架け化がおこっている。メチレンの場合には

CH₂=CH·CH₂→CH₂=CH·CH₂

の両型があり、メチレンの場合にはジェヒドロイデン環はできない。ナフタリンでは主として N 置換することになる。

反应の機構は次のように示された。

(γ) がかなはだしく低下するので主鎖の切断が伴ったことは明らかである。
合成高分子化合物の有機化学反応

(3) H₂O → CH₃-CH₂-... + AlCl₃ ➔ H₂O → CH₃-CH₂-... + AlCl₃

(1) C₆H₆, C₆H₅CH₃

K₂MnO₄ → CH₃-C-CH₃-... + C₆H₆COCH₃

上記のうち1は混酸塩で輝赤色溶液となるのが、この呈色反応はポリメタクリレートも行う。

ii) ポリアクリル酸ヒドラチッド ポリアクリル酸エステルに塩水ヒドラチンを使用させるとヒドラチッドになる。このことがKernら(25)によって初めて研究された。

iii) CH₂-CH₂-... + NH₂NH₂, H₂O ➔ CH₂-CH₂-... + CONH₂

+ ROH + H₂O

生成ポリメタクリレート 5gを精製し50gのN₂H₄-H₂Oと煮沸水浴で均一溶液になるまで2.5hr加熱させ、1ccの酢酸を含むメタノール500cc中に投入析出させめる。精製は水50ccに溶かしたメタノールで再沈殿させる。280℃以上で変色分解するが溶解せず、ηsp=0.29(0.1%溶液)をポリメタクリレートの式で計算すると分子量80,000元余分析は(C₆H₄ON₂)ₙとして一致する。

このポリアクリル酸ヒドラチッド (PAH と以下に記す)は加熱によって、関係温度50%以上の空気中におくことによって、メタノールと接触させることで、塩化酸によって不溶性ポリアクリル酸ヒドラチッドに変化する。ポリアクリル酸アミドとNH₂NH₂, H₂Oの反応でもポリアクリル酸ヒドラチッドになるが、このときは初めから不溶性のものができる。

(反応) 水溶液からHCl, H₂SO₄, HNO₃の添加でそれらの塩が析出する。硫酸塩のみに水不溶（塩酸化のため）。ビクレートは黄色。PAHは還元性で、フェーリング液、アンモニア性AgNO₃溶液と容易に反応。ヨウ素と次の反応をする。

2R-CONH₂+I₂→R-CONH⁻NHCO⁻R+N₂+4HI

クルチウム分解によってポリアミンを与えるはずである。次式。

(3) 二硫化炭素[26]も同様の式を記している。

(3) ポリアクリレートの置換反応 i) フェニル

リチウムとの反応 Rath(25)は次の反応を行った。

CH₂-CH₂-... + COOR + C₆H₅Li ➔ CH₂-CH₂-... + COOR + C₆H₅Li

PAH 1g水100ccの水溶液に1N-HCl25ccを加
え0℃で1N-NaNO₂, 12ccを滴下してポリアクリルアドチド2とすること。これは0℃でも分解してイソシアネートになるが、共存する水ですぐ不溶性のsym-尿素化合物が生成しており、ポリアミンをとり出すことはできなかった。それは次のように進行したのであろう。

\[
\begin{align*}
2 \rightarrow 3 & \quad \text{H}_2\text{O} \quad \text{CH}_2-\text{CH} \rightarrow \text{NH}_2 \\
\text{CH}_2-\text{CH} \quad + \quad \text{CH}_2-\text{CH} \rightarrow \text{CH}_2-\text{CH} \\
\text{NH}_2 + \text{NCO} \rightarrow \text{NHCONH} \\
\end{align*}
\]

第2報でアシドヒドロシル基およびケトンとの反応を扱っている。

\[
\begin{align*}
\text{PAH} + \text{RCHO} & \rightarrow \quad \text{CH}_2-\text{CH} \\
\rightarrow \text{H}_2\text{O} & \quad \text{CH}_2-\text{CH} \rightarrow \text{OH} \\
\text{CONH}-\text{N-CHR} & \rightarrow \text{NHCONH-C(CH}_3}_2 \\
\end{align*}
\]

ただしアセトンは溶解性のポリアクリルアドチドをドロゾン（下式）と表す。

\[
\begin{align*}
\text{CONHN}=\text{C(CH}_3)_2 \\
\end{align*}
\]

式4のPAH-ドロゾンは通常の反応を行う。

\[
\begin{align*}
\text{CH}_2-\text{CH} & \rightarrow \quad \text{NH}_2, \text{H}_2\text{O} \\
\text{CONHN}=\text{C(CH}_3)_2 & \rightarrow \text{R} \\
\end{align*}
\]

iii) \text{NH}_2 \text{とCOOH} とを交互に変成する高分子の合成
このVranckenの報告は有名である。

\[
\begin{align*}
\text{PAH} + \text{R-N-COOH} \rightarrow \quad \text{CH}_2-\text{CH} \\
\rightarrow \text{H}_2\text{O} & \quad \text{CH}_2-\text{CH} \rightarrow \text{OH} \\
\text{CONH}-\text{N-CHR} & \rightarrow \text{NHCONH-C(CH}_3)_2 \\
\end{align*}
\]

5の生成はポリマー3g, NaN₃ 5gをジメチルホルムアミド（ジオキサンでもよい）中で加熱し152℃に加熟すると7になる。これを加水分解する。

\[
\begin{align*}
\text{H}_2\text{O} \quad \rightarrow \quad \text{CH}_2-\text{CH}_2-\text{CH} \rightarrow \text{COOH} \\
\rightarrow \text{NH}_2 \rightarrow \text{NH}-\text{CO} \\
\end{align*}
\]

最後にできるポリラクタムのN%は13.0である。
合成高分子化合物の有機化学反応

またポリマーをジメチルホルムアミド中でNH₂OHと120℃に加熱してもポリラクタムになることも確かめられた。

\[\text{CH}_2=\text{CH}_2 \rightarrow \text{COCl} \rightarrow \text{COOH} \]

このポリラクタム環のポリマーを酢酸酸性にして必要量のNaNO₂を加え室温に24 hr放置すると、式の(g)のようになるが、その酢酸溶液にCH₃COClを加えて加熱し水中に溶かしたペンゼンでソルエートを析出させた。このポリラクタム部（ラクタム環）を含む閉環部のようにNH₂基とCOOH基を交互に持つものが得られるはずであるが、Conix, Smets は引き続いてその開環速度を類似化合物と比べた。50~130℃で1 N-NaOHで反応させると

\[\text{COCl} \rightarrow \text{COOH} \]

に一致する。表3 の左側が低分子で右側はポリマーである。*1 はポリビニルビロリドン、**1 は上述のラクタム63.1%、開環部36.8%のポリラクタム、***1 はビニ

表3 ラクタム環の開環

<table>
<thead>
<tr>
<th>CH₂-CH₂CO₁</th>
<th>logpZ</th>
<th>Eₐ</th>
<th>CH₂-CH₂CO₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>27±0.5</td>
<td>7.3</td>
<td>26.6%</td>
<td>4.0</td>
</tr>
</tbody>
</table>

さらにメタクリル酸メチルエステルとイソプロピルアセテートの共重合物を合成し、アセタール基をケン化すると次のようなことが得られる。元素分析の結果をみると n は7 と15 との数で、この 1~

\[\text{CH}_{2} \text{CH}_{2} \text{CH} = \text{COOH} \rightarrow \text{COOCH}_2 \text{CH} = \text{COOH} \]

2 g を 40~50%のH₂O₂とジオキサン溶液の10~15 mleに溶かし、0.2 moleの濃硫酸を加え、30~30 hr放置後に水で析出させめる。するとOH 基はOH 基に変る。ヨード滴定で活性酸素の％は2~4

％で、やや nが7~15として一致する。

（4） ポリビニルアルコールの置換反応

i）アセタール化合成繊維ポリビニルビロリド（PVA）をホルムアミド中でアセタール化したものであることは周知である。桜田氏らはその後も繊維の性質改良の見地から種々のアセタールを用いている。
ビニロン F…普通ビニロン (CH₂O にてアセタール化)
ビニロン C…クロルアセトアルデヒド (CICH₂CHO)
にてアセタール化
ビニロン S…HOC-CH₂-Sx-CH₂-CHO にてアセタール化
ビニロン B…ベンツアルデヒドにてアセタール化
ビニロン N…ノルアルデヒドにてアセタール化
ビニロン C は NH₄ や NH₂CH₂CH₂NH₄ で挿入し樹脂化が起こる。後者はビニロン AN の名がついているが、
その構造は次のようである．

…CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂—
O—CH—O —
NH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂—
O—CH—O OH

さらに田辺氏らがは、グリオキザール OHC-CHO およびテトラフルオルアルデヒドでアセタール化を行った。井
本氏らは、クロトンアルデヒドを用いたし、八木氏らはフラン化アセタールを用いた。クロトンアルデヒドの場合は
非常に固い成分化を受ける。アセタール化時に重合
をしてしまい樹架化した治と推定される。

ii) ポリビニールスルホネートの合成 Reynolds らは、まずビニロンでベンゼンスルホネートと処理し
した。スルホネート基のあるいはさらに、OH と置

…CH₂-CH₂-CH₂-CH₂—
O—SO₂Cl

換されること。たとえば生成物の組成は表 4 のごとくで、
ある量のスルホネート基置換のあとで還元化が進行するか
いて、

表 4 PVA と C₃H₆SO₃Cl の反応生成物 (4% 1°C にて)

<table>
<thead>
<tr>
<th>反応時間 (hr)</th>
<th>生成物</th>
<th>サルホネート塩化ビニールのエポキシ化のモル比例</th>
<th>ビニールアルコールのモル数</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>—</td>
<td>0.800</td>
<td>0.200</td>
</tr>
<tr>
<td>15.9</td>
<td>1.2</td>
<td>0.732</td>
<td>0.050</td>
</tr>
<tr>
<td>15.4</td>
<td>1.4</td>
<td>0.668</td>
<td>0.055</td>
</tr>
</tbody>
</table>

表 5 PVA と CH₂C₂H₂SO₃Cl の反応生成物 (50±1°C にて)

<table>
<thead>
<tr>
<th>反応時間 (hr)</th>
<th>N%</th>
<th>S%</th>
<th>Cl%</th>
<th>黄色</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td><1</td>
<td>6.1</td>
<td>20.0</td>
<td>黄色</td>
</tr>
<tr>
<td>71</td>
<td>2.1</td>
<td>5.2</td>
<td>21.9</td>
<td>灰色</td>
</tr>
<tr>
<td>145</td>
<td>2.4</td>
<td>2.2</td>
<td>24.2</td>
<td>カラデ</td>
</tr>
<tr>
<td>220</td>
<td>2.4</td>
<td><1</td>
<td>23.9</td>
<td>噴カラデ</td>
</tr>
</tbody>
</table>

反応温度

反応温度が 50°C になると塩基置換がおこるとなるが、
さらに N が生成物の中にはいてくる。トルエンスルホ
ネートクレロイドを用いた場合では表 5 のような生成物
を得る。

この場合温度として使用したビニロンからくる。す
ために Reynolds らはポリビニールスルホネート
1 部を第 3 項アミン 5 部と加熱して次式のような反応が
起こることを確認した。

…CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂—
O—SO₂R —O—SO₂R OH OH

2R₂/N → …CH₂-CH₂-CH₂-CH₂-CH₂-CH₂—
R₂—N—SO₂R OH OH

とえば 59°C にて 8 日間放置後得たものは S %10.7.
N%3.9 であった。その速度は図 1 のごとく -OS,R
基の R が CH₃ の場合最も速く、CH₂ の場合最もおそい。

図 1

第 1 項アミン、第 2 項アミンと同様に反応して次式
構造のものを与える。（表 6 参照）

PVA-スルホネート + R¹-N²-R¹' → …CH₂-CH₂-CH₂-CH₂-CH₂-CH₂—
R²—N²—R¹' —O

表 6

<table>
<thead>
<tr>
<th>反応時間</th>
<th>水素化アミン</th>
<th>反応温度</th>
<th>水素化生成物</th>
</tr>
</thead>
<tbody>
<tr>
<td>6日</td>
<td>ビスアセチル</td>
<td>50°C</td>
<td>8.1 0.0</td>
</tr>
<tr>
<td>6日</td>
<td>モルホリリン</td>
<td>50°C</td>
<td>7.8 0.0</td>
</tr>
<tr>
<td>2日</td>
<td>メタノールアミリン</td>
<td>25°C</td>
<td>8.1 2.9</td>
</tr>
<tr>
<td>18 hr</td>
<td>メタノールアミリン</td>
<td>95°C</td>
<td>8.9 0.0</td>
</tr>
<tr>
<td>2日</td>
<td>メタノールアミリン</td>
<td>50°C</td>
<td>7.0 6.6</td>
</tr>
</tbody>
</table>

なお Reynolds らは上記に記したテトラヒドロパ
合成高分子化合物の有機化学反応

イラン核を証明するために低分子のものを用いて合成的に研究を行っている。

（5）ポリアクリルアミドの置換反応 1）メチロール化
ポリアクリルアミド（PAA）の水溶液に塩基性触媒の存在で（pH 8〜10）ホルマリンを作用させるとメチロール化が起こる。pH が大きすぎるとケン化が併発する。トリエタノールアミン触媒（pH 8）、70℃で72%、リン酸三ナトリウム触媒（pH 10）、室温で91%のメチロール化が進行する。

\[
\cdots \text{CH}_2-\text{CH} \cdots \rightarrow \cdots \text{CH}_2-\text{CH} \cdots \]

\[
\text{CONH}_2 \rightarrow \text{CONH-CH}_2\text{OH}
\]

このメチロール化物に少量の K,S,O_4 を加えて 100℃に加熱すると固い不溶性物に変化する。

ii）ハログン化
光またはハロゲン化水素の存在で容易に Cl またはフッ素が入る。

iii）スルホメチル化
最近に Schiller らが報告した、PAA とホルマリンと NaHSO_3 とを NaOH アルカリ性で作用させる。

\[
\cdots \text{CH}_2-\text{CH} \cdots + \text{H}_2\text{SO}_4 + \text{NaHSO}_3 \rightarrow \text{CONH}_2 \rightarrow \text{CONH-CH}_2\text{OH}
\]

式 (AA)_n

図 2 参照。生成物は土奨改良剤に使用される。

iv）ホフマン分解
Jones らと Arcus らはアクリルアミド、メタクリルアミドの重合物にこの分解反応を行った。

\[
\cdots \text{CH}_2-\text{CH} \cdots + \text{NaOH} + 2 \text{NaOH} \rightarrow \text{CONH}_2
\]

\[
\text{PAA} \rightarrow \cdots \text{CH}_2-\text{CH} \cdots + \text{Na}_2\text{CO}_3 + \text{NaX} + \text{H}_2\text{O}
\]

NH_2

ポリビニルアミン

N%から考えると理論値は、

\[
\begin{align*}
\text{-CH}_2-\text{CH} & - \text{CH}_2-\text{CH} - \text{CH}_3 & \text{CH}_3 \\
\text{NH}_2 & \text{CONH}_2 & \text{CH}_2-\text{C} & - \text{CH}_2-\text{C} \\
\end{align*}
\]

\[
\text{NH}_2 \quad \text{CONH}_2
\]

N%32.5 19.7 24.6 16.5

である。Jones が PAA から得たものは N%9.7〜15.0、Arcus がポリメタクリルアミドから得たものは N% 8.8〜12.3 で、いずれのビニルアミンを得たかは N% がほんのばくしだしき失われていた。この場合は反応温度が湯浴上であった。最近に Schiller らも同様に反応を試みた。

表 7 PAA のホフマン分解

<table>
<thead>
<tr>
<th>pH</th>
<th>10%</th>
<th>5.25%</th>
<th>5.8%</th>
<th>H_2O</th>
<th>HCl</th>
<th>pH</th>
<th>時間</th>
<th>吸収率</th>
<th>N%</th>
<th>N%</th>
<th>N%</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td>142g</td>
<td>49.2</td>
<td>38.4</td>
<td>600g</td>
<td>58.4</td>
<td>25~27</td>
<td>69</td>
<td>11</td>
<td>24.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>142g</td>
<td>29.4</td>
<td>34.4</td>
<td>314</td>
<td>55.2</td>
<td>25~28</td>
<td>60</td>
<td>12.8</td>
<td>22.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>356g</td>
<td>13.5</td>
<td>853</td>
<td>793</td>
<td>148</td>
<td>22~26</td>
<td>60</td>
<td>25.3</td>
<td>—</td>
<td>0.21</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>142g</td>
<td>29.4</td>
<td>34.1</td>
<td>317</td>
<td>55.2</td>
<td>22~26</td>
<td>69</td>
<td>9.4</td>
<td>0.63</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* HCl は 37.3〜37.6%。

v）アミノメチル化
Grim の特許があつてメタクリルアミド重合物に作用しているが、Schiller らも PAA 作用している。マンニヒ病反応である。

\[
\cdots \text{CH}_2-\text{CH} + \text{HCHO} + \text{RN}_2 \rightarrow \text{HN}_2 \rightarrow \text{CONH}_2
\]

\[
\cdots \text{CH}_2-\text{CH} + \text{HCHO} \rightarrow \text{CH}_2-\text{CH}_2-\text{CONH}_2
\]

CH-NH-R+X

まず pH 10〜10.5 で当量の CH_2O を作用させ（リン酸三ナトリウム使用）したのも、アミンを加えて70〜75℃で20〜25min 保たれた。生成物のうすい分析は試されていない。

（6）ポリステレンの置換反応 1）ポリスチレンの塩素化
まず Bachman らの報告である。

表 8 常温でのポリスチレンの塩素化（Bachman）

<table>
<thead>
<tr>
<th>ポリステレン (a)</th>
<th>溶媒</th>
<th>CI_2</th>
<th>CI_2</th>
<th>時間</th>
<th>生産物</th>
<th>収率</th>
<th>収率</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 624 g</td>
<td>CI_2</td>
<td>2.51</td>
<td>950g</td>
<td>874</td>
<td>6</td>
<td>15</td>
<td>1113</td>
</tr>
<tr>
<td>B 624 g</td>
<td>CI_2</td>
<td>2.51</td>
<td>1025</td>
<td>851</td>
<td>6</td>
<td>14</td>
<td>1120</td>
</tr>
</tbody>
</table>

ただし a) ポリスチレン A は分子量 7,000、B は 50,000 と軽量である。b) 収率はポリスチレンの増量から算出する。c) 分解量は 400〜450℃の総合中に分離させて重量を測定し、試料 55〜120℃/10min のもの、重量試料への分解の容積比を比較する。

分解生成物は次頁上の式のような組成であった。これは過マンガ酸カリウムで酸化して塩素化安息香
酸として懸想されたが、次の報告と一致する結果である
（ポリインデンのクロール化も CCl₄ 中、FeCl₃ の存在で
0～10°C で行っている）。
Teyssie らは溶媒で CHCl₃ や CCl₄ のポリステレン
溶液に 25±0.1°C で Cl₂ ガスを通じた。触媒は FeCl₃,
や AlCl₃ なども採用したが I₂ がもっとも再現性を

![図 3 ポリステレンの塩素化](image)

示した。図 3 は塩素化の速度を示しているが、溶媒に
CCl₄ を用いた場合と、触媒 I₂ の量は

\[A = 0.0016, \quad B = 0.0043, \quad D = 0.0071 \text{ mole/l} \]

と I₂ の量が多いほど反応は速くなる。曲線 C では
0.0051 mole/l 用いたが、B の場合よりおそろい。これで
CHCl₃ が溶媒として不適当であることがわかり。この
反応はイオン的に進行している。化学分析や赤外線吸収
を併用して次の構造を推定した。すなわち種々の塩素化
の反応をおこなっていることがわかる。Cl は主鎖にも
置換される。ベンゼン核にはいるときは、まず o-か a-

\[\text{+ FeCl₃} \rightarrow \text{FeCl₄} + \]

のものまで得た。ステレン単位の 60.7% に 1 個づつ
Br がはいった割合になる。ベンゼンにとかし Na-プチ
合成高分子化合物の有機化学反応

レートを反応させめて HBr をとり主鎖に二重結合に入れた。Br 含量は 32%から 8.37%に減った。これはグラフト重合に用いたものである。

Jones がも CCl₄ 中にポリステレンを 1% 濃度で脱水し基膜を（3650 Å）絞素化し、Br% 1 〜 12 のものを得た。やはり三枝氏らのごとく第 3 級 C のところに Br がはいるものとした。

iii) ハロゲノヘキサメチル基 ポリステレンまたはステレシジニアルペッセン共重合体の核に CH₂Cl を導入し、これが第 3 級アミンと反応させたものはアミオン交換樹脂として重要視されるので特許も多い。Jones はメチルクロロメチルエーテルを溶媒兼試剤として、40〜50℃にて Zn, ZnO, ZnCl₂ を作用させめて CH₂Cl₂ を置換させめた。

\[\text{CH}_2\text{Cl} + \text{R}_{13} \rightarrow \text{CH}_2\text{Cl} + \text{R}_{13} \]

このさい CH₂OCH₂Br を用いると CH₂Br がはいる。ホルマリンと HCl を使用しても CH₃Cl₂ ははいる。生成物からは完全に ZnO や ZnCl₂ を除く必要があるが、そのためにはジオキサンにとかし水で再沈させ、ZnCl₂ がのこるた不溶化し黄色化するおそれがある。

これに CH₂Cl 基の反応を書きかえる。Boyd は次の反応を記した。

\[\text{CH}_2\text{Cl} + \text{R}_{13} \rightarrow \text{CH}_2\text{Cl} + \text{R}_{13} \]

アミンとしては (CH₃)₃N と (C₂H₅)₃N、メチルエタノールアミン、プロピレンジアミン、メタエチレンベンタミンなど、反応溶液はジオキサン、水など、液体アミノアでは架橋を起こす傾向がある。

Kennedy がジニアルペンゼンで架橋したポリスチレンをクロメル化して上記のカチオン交換樹脂を合成した。

iv) メルカプタンの合成 大河原氏はクロムメル
化樹脂に SH 化合物をかえた。[33]

\[\text{CH}_2\text{CH} \quad \text{CS(NH)}_2 \quad \text{NaOH} \quad \text{CH}_2\text{SH} \]

なおポリピレンアルコールについても次の反応を行つ
ている。

\[\text{CH}_2\text{CH} \quad \text{CS(NH)}_2 \quad \text{NaOH} \quad \text{CH}_2\text{CH} \quad \text{SH} \]

またこれとまったく同じだが、Parrish はポリステレ
ン CH₂Cl を入れ (Cl%21.8)、ジオキサンで脱水させ、中の 60%量のクロム酸と反応させ、それを NaOH とたいて S%21.3 のものを得ている。

中村氏の次の反応がある。得たもののは不溶物である。

\[\text{CH}_2\text{CH} \quad \text{CCl}_4 \quad \text{HCl} \quad \text{HCl} \quad \text{SOCl}_2 \]

ついでに記すと α-チオアルステレンのポリマーは別に次のようにして Overberger らによって合成された。

\[\text{COCH}_3 \quad \text{COCH}_3 \quad \text{HO-CH-CH}_3 \]

\[\text{NH}_2 \quad \text{C-S} \quad \text{S-OC}_2\text{H}_5 \]

\[\text{HO-CH-CH}_3 \quad \text{AcO-CH}_3 \quad \text{S-COCH}_3 \]

\[\text{CH}2\text{CH}_3 \quad \text{SH} \quad \text{SH} \quad \text{SH} \]

また後掲アミノ化のところで SH の導入を記す。

v) ニトロ化 Bachman ら は d 1.49 〜 1.50 の発
煙硝酸 60 mole 中にポリステレン 5g を徐々に加えた。
発熱して直ちに溶ける。水中に投じて析出させめる。
収量 6.5 g, N% 9.5〜10.0 (C₆H₄(CH₂CH)NO₂) とし
て N% 94, ニトロペンゼン可溶。
Zenitman は 38) 迦
酸によるニトロ化をくわしく研究し
図 4 の A 部のところでもニトロ化しやすいとし
た。10〜50℃, 1〜24hr でニトロ化
したが、生成物の溶解度は表 9 のとくでであった。
表 9 (加熱溶解), G (ゲル化), SW (融解), I (不溶)

<table>
<thead>
<tr>
<th>N%</th>
<th>9.8% 11.7% 12.4% 13.4% 14.4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>S S S S S S S S S</td>
</tr>
<tr>
<td>ニトログリセリン</td>
<td>S S S S S</td>
</tr>
<tr>
<td>フェノール</td>
<td>S S S S S</td>
</tr>
<tr>
<td>シクロヘキサン</td>
<td>SW G S S S</td>
</tr>
<tr>
<td>ニトロペンゼン</td>
<td>G G</td>
</tr>
<tr>
<td>アセトン</td>
<td>I I I SW SW</td>
</tr>
</tbody>
</table>

(メノニトロ化合物の N% 9.4, メジトロ化合物の N% 14.4)

その他特許参照(39)。

vi) ニトロ基の還元、アミノ基のジアゾ化 Bachma
ン 43) は薄 NH₄OH 25 mole, 水 200 mole の中にニトロ
化ポリスチレンを懸濁し、これに過酢の Na₂SO₄
を加え 3日間加温にて加熱し 2.5g の黄褐色のポリアノ
スチレンを得た。SnCl₂-HCl でも還元される(39, 40-41)。
ジアゾ化は困難ではない。Bachman はジアゾ化
物のカップリングを行っている。β-ナフタール (赤色),
ネピルウィンター酸 (赤黄色), シュファー酸 (赤色),
α-ナフタール (色), ブレンナー酸 (色), シメ
チルアミリノ (酸性で赤色, 中性と塩基性でカーゴ)。
Parrish は次の反応でイオン交換樹脂を得た(43)。

<table>
<thead>
<tr>
<th>ポリスチレン</th>
<th>→ CH₂CH₂→ Sn (HCl)</th>
<th>→ CH₂CH₂→ HNO₃ 5℃にて</th>
</tr>
</thead>
<tbody>
<tr>
<td>ライト</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hale は Ag₂SO₄ を触媒として 1% 加え濃硫酸と
ポリスチレンを 100℃ に 8 hr 熱した。
スルホン化にあたり架橋反応が伴われやすいのは次の
ような反応によるものと考えられる。

R-CH₃ + H₂SO₄ → R-CH₃·SO₃H
R-C₂H₄·SO₃H + R-C₂H₄ → R-C₂H₄·SO₃·C₂H₄·R

そこで Gilbert 43) は Cl₂·SO₃ を溶媒とし、ポリ
スチレンの濃度を小さくして SO₃ でスルホン化した。
また Signer はポリスチレンの C₆H₄Cl₂ 溶液をジ
オキサン-SO₃(1: 1 付加物) と振とうして可溶性のも
のを得た。図 5 は反応の進行を示すが、条件は表のと

Table 10: Polystyrene Sulphonation

<table>
<thead>
<tr>
<th>ポリマー</th>
<th>反応</th>
<th>条件</th>
<th>溶媒</th>
<th>SO₃H 当り</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ステレン・エチレン共重合物</td>
<td>C₆H₄SO₃H₂</td>
<td>H₂SO₄</td>
<td>—</td>
<td>15%</td>
<td>2648821</td>
</tr>
<tr>
<td>ポリスチレン、ポリ(score)</td>
<td>CCl₄·SO₃H₂</td>
<td>CH₂Cl₂ + SO₃H</td>
<td>—</td>
<td>15%</td>
<td>2691644</td>
</tr>
<tr>
<td>ポリスチレン、ポリ(score)</td>
<td>CCl₄·SO₃H₂</td>
<td>CH₂Cl₂ + SO₃H</td>
<td>—</td>
<td>15%</td>
<td>2633211</td>
</tr>
<tr>
<td>ポリスチレン、ポリ(score)</td>
<td>C₆H₄SO₃H₂</td>
<td>—</td>
<td>0〜35%</td>
<td>2637000</td>
<td></td>
</tr>
</tbody>
</table>

図 5: Polystyrene Sulphonation
合成高分子化合物の有機化学反応

C₂H₅ : SO₃ 温度

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>50℃</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>20</td>
</tr>
</tbody>
</table>

おりである。曲线 (1, 2) ではポリステレン 26 g, SO₃ 10 g,
ジクロルエタン 140 + 140 cc の処方である。平均値で核に
SO₃H を 0.1 g 以上含むものは水に溶ける。水を NaOH で中和しイオン交換樹脂柱を通過してスルホン酸を分離する。

Roth らもポリステレンおよびポリビニルトルエンを CCl₄-SO₃ 中で SO₃ でスルホン化しているが、特に p-メチル化合物は架橋しない可溶性スルホン化合物が得られやすいことを認めた。しかし置換ポリステレンではスルホン化度は低い。Wiley らは p-スルホンアミドポリステレンとステレンの共重合物を加水分解した。

\[\cdots \text{CH}_2-\text{CH-CH-CH-} \cdots \rightarrow \cdots \text{CH}_2-\text{CH-CH-CH-} \cdots \]

\[\text{SO}_2\text{NH}_2 \rightarrow \text{SO}_2\text{H} \]

またスルホン化ポリステレンの物理的諸性質については Abrams らの報告を参照。

viii) アルキル化とアシル化 この実験も Bachman らが報告している。フリードール・クラフツ型触媒で行ったのであるがその結果は不十分であった。そのほかに表11のような例がある。

表11 ポリステレンのアルキル化 (φ = C₆H₅)

<table>
<thead>
<tr>
<th>反応剤</th>
<th>触媒</th>
<th>溶媒</th>
<th>温度</th>
<th>時間</th>
<th>出所</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂, C₂H₂, n-C₆H₁₄</td>
<td>AlCl₃</td>
<td>—</td>
<td>常温</td>
<td>—</td>
<td>(70)</td>
</tr>
<tr>
<td>CH₂</td>
<td>SnCl₄</td>
<td>φ-CH₂Cl</td>
<td>—</td>
<td>—</td>
<td>(71)</td>
</tr>
<tr>
<td>CH₂</td>
<td>AlCl₃</td>
<td>φ-NO₂, Cl</td>
<td>40〜45℃</td>
<td>5.5 hr</td>
<td>(70)</td>
</tr>
<tr>
<td>RX</td>
<td>ルペン</td>
<td>HF</td>
<td>φ-NO₂, Cl</td>
<td>0〜5℃</td>
<td>2 hr</td>
</tr>
<tr>
<td>RX, オクタデセン</td>
<td>AlCl₃</td>
<td>φ-Cl (n-</td>
<td>20℃</td>
<td>120 hr</td>
<td>U.S.P. 2,569,400</td>
</tr>
<tr>
<td>RX, オレフィン</td>
<td>AlCl₃</td>
<td>CH₂NO₂, φ-NO₂, Cl, C₆H₅Cl</td>
<td>20℃</td>
<td>—</td>
<td>U.S.P. 2,651,628</td>
</tr>
</tbody>
</table>

Smyers らはステレン、インデン、クマロンなどのポリマーのアルキル化反応を報告している。たとえば GR-S を CC₁₄とした場合でジクロルベンゼン中で AlCl₃ を触媒として 110〜125℃で 30 min、塩化ステアリルと反応してステアリル核にステアリル基を、耐油性を改良しようとした。

ix) 酸化反応の合成 Metz らはポリステレンに上掲のようにイソプロピル基を導入したのち、ヒドロバーコキシドにした。

Hahn らも同じことを報告している。ジオキサン中で 75℃で 400 hr 酸素を通すと O 含量は 15.5%を達するが（これはメタノールに溶けるようにになって）、活性 O 含量は 3.8%にすぎない（図6参照）。ベンゼン溶液中では70℃、600 hrで O 合量 4.6%、活性 O 合量 1.4%である。これを硫酸で分解するとピニルフェノール単位を含むポリステレンとアセトンになった。

\[\text{CH}_2=\text{O} + \text{CH}_2=\text{O} \rightarrow \text{CH}_2-\text{CH-CH-CH-} \rightarrow \text{CH}_2=\text{CH-CH-CH-} \rightarrow O^+ + \text{CH}_2=\text{COCH}_3 \]

Hahn らの報告はポリステレン自体の空気酸化も記している。はなはだ困難でジオキサン溶液として O₂ガス中、atm で 75℃に 360 および 650 hr 加熱して O 含量 1.5 および 2.15%のものを得たが、しかしヒドロバーコキシドで反応が進行しない理由で KI で I₂が析出すること、下式のようないの反应でフェノールを生成することを確認したことと、ビニル化合物（メチルメタクリレート）の重合を開始させたことがある。

\[\text{CH}_2-\text{O} \rightarrow \text{CH}_2-\text{CH-CH-CH-} \rightarrow \text{CH}_2-\text{CH} \]

x) その他 最近に Dannley らは n-C₆H₁₄ジクロル

""
336

第15巻第7号（1957）

ここで塩素の脱却率は86.47%以下であるとの有名な計算をFlory41）がしたのである。

iii) ポリ塩化ビニリデン 脱 HCI してポリエチレンを与えます Boyer42）によつてくわしく研究された。なおこれらポリ塩化ビニルやビニリデン安定剤として、マレイン酸とフマル酸系のエステルが用いられるのは、Diels-Alder 反応を行なわせるためと考えられる43）。

\[
\begin{align*}
S &= C-N-CH_3 \\
S &= CH_2-C-CH-CH-C-CH-C-C-... + COOR COOR \\
\end{align*}
\]

このような熱分解のしやすさは次のようにあると Rath44）が述べている。

\[
\begin{align*}
\text{ポリ塩化ビニリデン} & \rightarrow \text{PVC の} \text{と塩素化合物} \rightarrow \text{PVC} \\
\text{ポリ塩化ビニール} & \rightarrow \text{PVA} \rightarrow \text{ポリ塩化ビニール}
\end{align*}
\]

iv) ポリα-クロルアルクリル酸 ラクトンをつくる。

\[
\begin{align*}
\text{COOH} & \rightarrow \text{CO} \\
\text{COOR} & \rightarrow \text{CO} \\
\text{COOH} & \rightarrow \text{CO} \\
\text{COOR} & \rightarrow \text{CO}
\end{align*}
\]

たとえば Alc. にメタノールを使うと CH₂O 含量 8.2 \%
C% 8.19, COOH (1 N-NaOH 3.26cc/gポリマー) のごとき反応物を得る。すなわち Cl は OH になるか、HCl でとり、COOH は COOR およびラクトンに変化したわけである。R = C₂H₅, C₃H₇, C₄H₉ など実験されている。

また Minsk ら45）は無水マレイン酸と酢酸ビニルの共重合ビニルビニル酸と硫酸で加水分解してラクトンをついていることから加えておく。ただし \(\text{CH₂C₂H₂CH₂-CH}_2\) なら \(\text{CH₂C₂H₂CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH}_2\) に \(\text{COOR} \rightarrow \text{COOH} \rightarrow \text{COOR} \rightarrow \text{CO}

ラクトンか \(\delta\)-ラクトンかの区別はできていない。本邦では松本氏が酢酸ビニルとメチルアクリレートを酸ケン
2.2 高分子の崩壊（略）

主鎖の分裂を含む崩壊反応であるが、総説は樋山氏①、井上氏②のほかに Grassie③の著書。

3. 付加反応

式の上から一見して試薬の付加する反応をここにまとめておく。

i) 水素添加 Hydropol という合成ゴムはポリブタジェンに理論の 50～70% の H₂を添加したものである。このようなことは合成ゴムや天然ゴムに対して実用上しばしば行われる。ポリブタジェン①やポリインデン②を Ni 触媒で加圧水素した Staudinger らの有名な実験は等価反応 polymeranaloge Umsetzung による高分子の存在を証明したものであった。最近に Warner らはこの水素化されたポリブタジェンの精製法についての特許③を得ている。ベンゼンやデカジンに水素化したポリマーを溶け、エチレンオキシド、プロピレンオキシド、シクロペンゼンなどの環状オキシルを添加すると、水素化物だけが析出するというのである。

ii) 二重結合への付加 PVC やポリ塩化ビニリデンの安定剤として生成する二重結合に試薬を付加させようとするものである。合成高分子に対する反応ではないが、ここにとくに Ritter④の最近の報を紹介しておきたい。合成高分子へも応用が多ようであるから、それはチオール酸を天然ゴムの二重結合に付加させたもので、これによって耐熱性ゴムを得た。溶剤中

CH₃

\[\text{CH₃-CH-CH₂-...} \ + \ R-CO-SH \]

\[\text{CH₃} \]

H S-COR

でもロールの上で練っても容易に付加する。チオール酸の反応のしやすさは次のごとくである。

最も...Cl₂C-COSH

塩...n-C₅H₄-COSH, C₅H₅-COSH

反応性...β-C₅H₄-COSH, β-C₅H₄(OH)COSH, p-Br-C₅H₄-COSH

弱...n-C₅H₄-COSH

弱...CH₂COSH, p-NO₂-C₅H₄-COSH

3,5-(NO₂)₂-C₅H₄-COSH

iii) エチレンオキシドの付加 Haas らは⑤はオートクレープの中でナイロンと過剰の液体エチレンオキシドとを入れ、10～72 hr, 80°C に加熱した。これは次式の反応である。
HCOOH 溶液

\[
\begin{align*}
\text{HCOOH} & \rightarrow \text{CH}_2=\text{NH}-\text{CO}-\text{CH}_2\ldots \\
\text{OH} & \rightarrow \text{CH}_3\text{N}-\text{CO}-\text{CH}_2\ldots \\
\end{align*}
\]

CH₃OH を使用せしめた。

\[
\begin{align*}
\text{HCOOH} \rightarrow \text{CH}_2=\text{NH}-\text{CO}-\text{CH}_2\ldots \\
\text{H}_2\text{O} & \rightarrow \text{CH}_3\text{N}-\text{CO}-\text{CH}_2\ldots \\
\end{align*}
\]

CH₃OH%5.9（NH の 23%が置換）, ビリジン中で 130 ～50°C で反応させてもよい, CH₃O%12.6（NH の 55% が反応）。

次いでメチルメチル化ナイロンの反応を行った。

\[
\begin{align*}
\text{PVA} \rightarrow \text{CH}_2=\text{NH}-\text{CO}-\text{CH}_2\ldots \\
\text{PVA} & \rightarrow \text{CH}_3\text{N}-\text{CO}-\text{CH}_2\ldots \\
\end{align*}
\]

なおメチルメチル化ナイロンの性質は表12の ごとであった。

\[
\begin{align*}
\text{TABLE 12} \text{ メチルメチル化ナイロン}
\end{align*}
\]

<table>
<thead>
<tr>
<th>NH 基の置換％</th>
<th>0 %</th>
<th>35%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp</td>
<td>264°C</td>
<td>150～160</td>
<td>100～110</td>
</tr>
<tr>
<td>不溶</td>
<td>8000～10000</td>
<td>4500～6000</td>
<td>2000～3000</td>
</tr>
<tr>
<td>溶解度</td>
<td>40%</td>
<td>30～35%</td>
<td>70～80</td>
</tr>
<tr>
<td>抗張力 psi</td>
<td>100%延伸からの回復</td>
<td>90～95</td>
<td>90～95</td>
</tr>
<tr>
<td>モジュラス 10⁶psi</td>
<td>290</td>
<td>14.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

このメチル化反応は Jackson ら(13)によって羊毛にも応用されている。

水添に文献調査に協力いただいた当研究室の黄慶霖、
竹本喜一氏ならびに御教示をいただいた神戸大学工学部奥正己教授に謝意を表する。

献　献

1) G. Smets : Angew. Chem. 67, 57 (1955)
2) 大津隆行, 橋山茂, 井本隆, 竹本喜一, 黄慶霖,
森尾生一、農業経済学会：高分子化学 13, 1~107 (1956)
3) 井本耕：第4回高分子科学講演会（1956, 7月）p. 57（本文はこれを書きなかった）。
5) U. S. P. 2,481,188 (1946)
6) Brit. P. 710,523 (1954)
7) U. S. P. 2,261,757 (1941)
8) BP 619,905 (1949)
9) U. S. P. 2,181,144 (1939), 2,275,164 (1941), 2,291,574 (1942)
10) U. S. P. 2,592,814 (1952), 2,615,000 (1952), 2,640,048 (1953)
13) U. S. P. 2,458,841 (1949)
14) J. D. Cotman, Jr.: J. Am. Chem. Soc. 77, 2790 (1955)
17) H. Batzer, A. Nisch: ibid. 22, 131 (1957)
19) 大江秀雄: 工化 45, 67, 824 (1942); 48, 89 (1945); 高分子化学, 3, 29 (1941); 合成纖維研究 2, 33 (1943)
20) C. S. Marvel, J. H. Sample M. F. Roy: J. Am. Chem. Soc. 61, 3241 (1939)
21) O. Seipold: Chem. Abst. 48, 7338 (1954)
25) H. Stach: Angew. Chem. 63, 267 (1951)
26) H. Ratt, L. Heiss: Mellizand Textilber. 35, 536 (1954)
31) 三枝武夫, 野崎正士, 小田良平: 工化 57, 243,333 (1954)
72) AP 2, 529, 316 (1950)
73) W. Hahn, L. Cheltenböhmer: Makromol. Chem. 16, 50 (1955)
75) 大津隆行：日化年会（昭31，於東京）にて講演，J. Polym. Sci. 印刷中
76) 三枝武夫，小田良平：高分子 4, 522 (1955)；井本英：有学伝 14, 10 (1956)；E. H. Immergut, H. Mark: Makromol. Chem. 18/19, 322 (1956)；森瀬生，高橋有二，谷垣健一，大津隆行：樹脂加工 5, 527 (1956)
78) N. Grassie: Trans. Farad. Soc. 48, 379 (1952); 49, 835 (1953)
78a) 桜田一郎：ポリビニルアルコール討論会 (1955)，p. 1；坂口講義，ibid. p. 43
80) 井本英，太田益司：工化 54, 470 (1951), 井本英，大津隆行：工化 54, 771 (1951), 56, 615, 802, 899 (1953); 57, 245 (1954), 58, 472 (1955), 太田益司：工化 55, 31 (1952)
84) C. S. Marvel: J. Am. Chem. Soc. 62, 3498 (1940)
85) L. M. Minsk, W. O. Kenyon: ibid 72, 2650 (1950)
87) 森本恒隆：高分子化学 7, 142 (1945)
88) 中塚和夫，大津隆行，松田美：樹脂加工 6, 73 (1957)
89) C. L. Arcus: J. Chem.Soc. 1949, 2732
91) 井本英，松田美：合成繊維討論会年 (195611月)，p. 17
92a) 長尾英夫，内田理也：山口晃雄：工化 58, 698, 940 (1956)
93) AP 2, 566, 250 (1951)
95) F. T. Wall: ibid: 64, 269 (1942)
96) C. S. Marvel, E. H. Riddle, J. O'Connor: ibid 64, 92 (1942)
97) 井上良三：高分子論文 9, 1 (1953)
99) H. Staudinger, V. Wiederscheim: Ber. 62, 2406 (1929)
100) H. Staudinger, H. Johner, G. Schiemann, V. Weiderscheim: Helv. 12, 962 (1929)
101) U.S.P. 2, 726, 233 (1955)
104) S. G. Cohen, H. C. Haas, H. Slotnick: ibid 11, 193 (1953)
106) T. L. Cairns, H. W. Gray, A. K. Schneider, R. S. Schreiber: ibid 655
107) D. L. C. Jackson, M. Lipson: Textile Res. J. 21, 156, 655 (1951)