σ-型有機金属化合物の二三の反応

橋 本 春 吉*

1966年に前半の報文を中心に、σ-結合をもつ有機金属化合物の反応を述べることにする。σ-型有機金属化合物の反応については、本号の藤原氏の総説および他の総説を参照されたい。反応は形式的に分類した。反応機構による分類または反応薬物の性質による分類は無理であり、ときに危険をもとめようからである。特に有機金属化合物では、配位子の性質、その結合の様式、溶媒の種類、中心金属の原子価状態などによってその反応特性はさまざまに変化する。たとえば、その一例がつぎの有機リチウムまたは亜鉛化合物の求核性と求電子性の問題である。

I. 求核性と求電子性

一般に gem-ニトロベンジルリチウム化合物（1）はカルポニオンの典型的な性質を示すが、条件によってはオレフィンに付加しシクロプロパン誘導体を与える。後者の反応は（1）が求電子性のカルベンイド（2）として働かうためだと考えられている。これによれば、トリクロルメチル

\[
\begin{align*}
R_C\mathrm{Li} & \rightarrow R_C\mathrm{Li} \quad \text{(求核的)} \\
R_C\mathrm{Cl} & \rightarrow R_C\mathrm{Cl} \quad \text{(求電子的)}
\end{align*}
\]

リチウム（3）にオレフィンを共存させ、ついてニトロベンジルリチウム化合物（1）のオレフィンを処理すると表1の結果が得られる。反応はTHF-100°Cで最もカルポニオンとして存在し、-78°Cではカルベンイド性も生じ、エーテル中Cl2,Li と CO2, CO3, Cl, COOH+を生成するG(3)。

<table>
<thead>
<tr>
<th>反応</th>
<th>温度 (°C)</th>
<th>取率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl2,Li 与 CO2, CO3, Cl, COOH+</td>
<td>-78</td>
<td>48</td>
</tr>
<tr>
<td>Cl2,Li 与 Cl2</td>
<td>-78</td>
<td>27</td>
</tr>
</tbody>
</table>

10°Cではシクロヘキセンに付加するが(4)，THF-100°Cでは塩化ベンジンに求核反応として作用しほとんど定量的に(4)が生成する。-10°Cでもシクロヘキセン

\[
\begin{align*}
\text{Ph}_3C & \rightarrow \text{Ph}_3C \quad \text{(6)} \\
\text{Et}_2O & \rightarrow \text{Et}_2O \quad \text{(7)}
\end{align*}
\]

ニンの付加はほとんど起こらない。

ヨウ化メチレンと亜鉛鉄カルバップから生成するgem-ヨード亜鉛化合物（いわゆる Simmons-Smith 試薬）(9)はオレフィンに付加しシクロプロパン誘導体を与えるが、この反応におけるオレフィンの相対速度は表2のとおりであり、立体制御を考えるとき、には二重結合の電子密度が増すほど反応は速くなり、(9)が求電子試薬として働いていることになる。ところが過剰の金属亜鉛の

\[
\begin{align*}
\text{X-Zn} + \text{CO} & \rightarrow \text{COOH} \\
\text{(9)} & \quad (X: I \text{または CH}_3)
\end{align*}
\]

<table>
<thead>
<tr>
<th>オレフィン</th>
<th>温度 (°C)</th>
<th>取率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF</td>
<td>-100</td>
<td>67</td>
</tr>
<tr>
<td>ca 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Et2O</td>
<td>-100</td>
<td>27</td>
</tr>
<tr>
<td>ca 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 東京大学工学部合成化学科（東京都文京区本郷）
* Department of Synthetic Chemistry, Faculty of Engineering, University of Tokyo (Bunkyo-ku, Tokyo)
表 2 Simmons-Smith 反応 [1] におけるオレフィンの相対速度

<table>
<thead>
<tr>
<th>アリル基</th>
<th>相対速度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-メチル-1-ブテン</td>
<td>2.53</td>
</tr>
<tr>
<td>2-メチル-2-ブテン</td>
<td>2.18</td>
</tr>
<tr>
<td>2,3-ジメチル-2-ブテン</td>
<td>1.29</td>
</tr>
<tr>
<td>シクロヘキシン</td>
<td>1.00</td>
</tr>
<tr>
<td>cis-3-ヘキセン</td>
<td>0.83</td>
</tr>
<tr>
<td>1,2-ジメチルシクロヘキセン</td>
<td>0.58</td>
</tr>
<tr>
<td>trans-3-ヘキセン</td>
<td>0.42</td>
</tr>
<tr>
<td>1-ヘキセン</td>
<td>0.36</td>
</tr>
<tr>
<td>3,3-ジメチル-1-ブテン</td>
<td>0.14</td>
</tr>
</tbody>
</table>

存在で (9) つまり芳香族アルデヒドを反応させると、好収率でピニル置換芳香族が得られる。置換基効果（表 X-CHO+ICH2ZnX

Zn ₄X-CHO+CH₃CH₂ (2)

3）および溶媒の塩基性の効果（表 4）は、この反応で塩酸金属化合物が求核試薬としてカルボニル基に作用していることを示しています。溶媒の塩基性の効果は

表 3 反応 (2) における a)-置換基 X の効果

<table>
<thead>
<tr>
<th>X</th>
<th>Hammett φ</th>
<th>X-CH₂CHO 变化率（％）</th>
<th>X-CH₂CH₂CH₃ 収率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>0.227</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td>H</td>
<td>0.000</td>
<td>53</td>
<td>67</td>
</tr>
<tr>
<td>CH₄</td>
<td>-0.170</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>CH₂O</td>
<td>-0.268</td>
<td>45</td>
<td>48</td>
</tr>
</tbody>
</table>

a）THF 中 40°C, 6 hr

表 4 反応 [1],[2] における溶媒効果

<table>
<thead>
<tr>
<th>溶媒</th>
<th>溶媒の pKₐ</th>
<th>1-Pr₂O からノルカルバリル</th>
<th>MgCl₂1, MgBr₂2 からスレーキン</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Pr₂O</td>
<td>-4.30</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Et₂O</td>
<td>-3.59</td>
<td>67.0</td>
<td>37</td>
</tr>
<tr>
<td>THF</td>
<td>-2.08</td>
<td>36.3</td>
<td>67</td>
</tr>
<tr>
<td>DMEa)</td>
<td>-3.27</td>
<td>16.0</td>
<td>-</td>
</tr>
</tbody>
</table>

a）ジメチル塩化エタン

II. 塩基性

2RMgX+CdCl₂EtO R₂Cd+MgCl₂+MgX₂ → [3]

R₂Cd+2R’COCl → 2RCOR’+CdCl₂ [4]

表 5 R₂Cd と酸化剤との反応 [4] における塩効果

<table>
<thead>
<tr>
<th>R₂Cd mol比</th>
<th>R’COCl mol比</th>
<th>溶媒</th>
<th>反応温度</th>
<th>反応時間</th>
<th>R₂Cd 収率 (％)</th>
<th>単離 RCO’</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>Ph</td>
<td>1</td>
<td>1.6</td>
<td>MgCl₂1, MgBr₂2</td>
<td>THF</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1.6</td>
<td>LiBr₁２</td>
<td>THF</td>
<td>40</td>
<td>1.25</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>1.6</td>
<td>LiBr₂</td>
<td>THF</td>
<td>25</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>C₆H₄</td>
<td>Ph</td>
<td>1</td>
<td>1.8</td>
<td>MgCl₂1, MgBr₂2</td>
<td>LiBr₄</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>1.6</td>
<td>MgCl₂, MgBr₂</td>
<td>LiBr₄</td>
<td>42</td>
<td>1.25</td>
<td>74</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>MgCl₂, MgBr₂</td>
<td>LiBr₂</td>
<td>42</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>MgCl₂, MgBr₂</td>
<td>LiBr₂</td>
<td>30</td>
<td>0.3</td>
<td>87</td>
</tr>
<tr>
<td>C₆H₄</td>
<td>CH₄</td>
<td>1</td>
<td>2.0</td>
<td>MgCl₂, MgBr₂</td>
<td>LiBr₂</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>MgCl₂, MgBr₂</td>
<td>LiBr₂</td>
<td>20</td>
<td>0.3</td>
<td>81</td>
</tr>
</tbody>
</table>

Bu₂Cd+CICOCOEt (11)

OCOCOEt

Bu-C-COEt (13)

LiBr

BuCOCOEt (15)

Bu₂Cd+CICOCOCl- (12)

OCOCOCl

Bu-C-COBr (14)

LiBr

BuCOCOBr (16)

は可逆反応である。安定なカルボアニオンを含む有機リチウム化合物形成の方向に平衡はかたよるa)。この
場合ペルオシウムを平衡定数には影響しないが反応速度

\[
\text{PhLi} + \text{ZC}_2 \text{H}_4 \text{Br} \xrightarrow{k^+} \text{ZC}_2 \text{H}_4 \text{Li} + \text{PhBr} \quad \quad \text{[5]}
\]

を遅くする。速度論による解析の結果、純フエニルペル"\[e\]
オシウムと、アミリウムを含むフエニルペルオシウムでは同じ速度式が使えないことがわかり、反応機構に差が生じていると考え推定した。ペルオキシピリジンメチルクラム（III）イオン（17）の酸分解はラジカル的開裂反応であるが、酸化ナトリウムは反応を促進し、活性炭パラメーターをいちじるしく変えるので、反応機構における変化が推定されている。以上の例では、反応の作用機構はまだ不透明である。

III. 反応中間体

反応中間体として \(\sigma \)-型有機金属化合物が仮定される例が多い。たとえば、Wacker 法で代表される \(\sigma \)-オレフィンメタライトウム中間体の反応をあげることができる。求体試料 \(\text{OH}^-\), \(\text{OR}^- \)などがすでに（18）に配置していって、オレフィンを攻撃するのか、外部から攻撃するのかは別として、Moiseev らは \(\sigma \)-中間体（19）、（20）などを提案している。オレフィンは酸化中性溶媒で酸化パラジウムでアセトシジキシ化され、1-オレフィンを主体にビシペルニル化が主体である。オレフィンの \(\text{OAc}^+ \)と酸化パラジウムを 20% 硫酸中 110°C で反応させてもビシペルニルと金属パラジウムが生成する。（30）と酸化パラジウムとの反応でもビシペルニルが生成する。

\[
\text{CH}_2=\text{CHCH} = \text{CHR} \quad \xrightarrow{\text{Hg}(II), \text{Pt}(II), \text{Ti}(III)} \quad \text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2
\]

と酸化パラジウムを 20% 硫酸中 110°C で反応させてもビシペルニルと金属パラジウムが生成する。（30）と酸化パラジウムとの反応でもビシペルニルが生成する。

\[
\text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2 \quad \xrightarrow{\text{Hg}(II), \text{Pt}(II), \text{Ti}(III)} \quad \text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2
\]

と酸化パラジウムを 20% 硫酸中 110°C で反応させてもビシペルニルと金属パラジウムが生成する。（30）と酸化パラジウムとの反応でもビシペルニルが生成する。

\[
\text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2 \quad \xrightarrow{\text{Hg}(II), \text{Pt}(II), \text{Ti}(III)} \quad \text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2
\]

と酸化パラジウムを 20% 硫酸中 110°C で反応させてもビシペルニルと金属パラジウムが生成する。（30）と酸化パラジウムとの反応でもビシペルニルが生成する。

\[
\text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2 \quad \xrightarrow{\text{Hg}(II), \text{Pt}(II), \text{Ti}(III)} \quad \text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2
\]

と酸化パラジウムを 20% 硫酸中 110°C で反応させてもビシペルニルと金属パラジウムが生成する。（30）と酸化パラジウムとの反応でもビシペルニルが生成する。

\[
\text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2 \quad \xrightarrow{\text{Hg}(II), \text{Pt}(II), \text{Ti}(III)} \quad \text{CH}_2=\text{CHCH} = \text{CHR} + \text{Pd}(OAc)_2
\]

と酸化パラジウムを 20% 硫酸中 110°C で反応させてもビシペルニルと金属パラジウムが生成する。（30）と酸化パラジウムとの反応でもビシペルニルが生成する。
1-ブチエンを異性化すると，H-D 交換も起こる。水中の中性化プロセスを生じる。この場合，異性化と H-D 交換とはほぼ同じ速度で，1 分子の 1-ブチエンが生じると 1 個の重水素がブチエンに導入される。1-ブチエンの 1 部は重水素化され，その位置は C1 である。2-ブチエンの多くは重水素を含まず，重水素化されたものは d, d-2-ブチエンである。これらは C7 の機構で説明できない。

(3) によれば水素は分子内部で，溶媒との交換は期待できない。たとえ (32) の寿命が長く溶媒中の重水素と交換が起ってしまい，これから遊離する 1-ブチエンは d, d-1-ブチエンになるはずだからである。また 2-ブチエンにおける重水素化の結果も説明困難である。そこで 1-ブチエンの CH2OD 中での異性化と重水素化の主な過程は図 1 のように考えられた。なお (36) の付加-脱離機構である。途中でオレフィンの交換 (33)→(34) が速く起こると考えられる。

図 1 1-ブチエンの異性化と重水素化 (CH2OD 中)

IV. 挿入反応

オキソ反応の機構に関連し C-M 結合へのカルボニル挿入反応は Co, Mn 系でよく知られている。2-クロルエチルジメチルア
ミンと NaMn(CO)₅ (40) を THF 中で反応させると環状アシル誘導体 (42) が生成する。これは中間体 (41)

\[(\text{CH}_3)_2NCH_2CH_2Cl + \text{NaMn(CO)}_5 \rightarrow \text{THF} \rightarrow (\text{CH}_3)_2NCH_2CH_2Mn(CO)_5 \]

(41)

\[(\text{CO})_2\text{Mn} + \text{R} + \text{N} \rightarrow \text{RCOMn(CO)}_5 \]

(45)

ができ、分子内で (10) の形式の反応がおきたものと理解される。2-クロルメチルベンジンと (40) または NaMo(CO)₅C₆H₆ との反応でも同様の生成物 (43), (44) ができる。NaFe(CO)₅C₆H₆,

NaW(CO)₅C₆H₆ からアシル誘導体は生成せず、α-結合をもつ (41) 型の化合物が得られる。(45) とブタジエンとともに 20°C で長時間放置すると α-アリルマンガン錯体 (46) が生成する

\[(\text{CO})_4\text{Mn} + \text{R} + \text{N} \rightarrow \text{RCOMn(CO)}_4 + \text{R} + \text{N} \]

(46)

アルキルまたはアリルマンガンまたはアルカリカルボニル錯体に、液体二酸化イオウを低温で反応させるとき、二酸化イオウが C-M 結合間に挿入される。(49) (50) の場合

\[\text{R} + \text{HgO} \rightarrow \text{RCOOH} + \text{Hg} \]

(50)

アルキルまたはアルキルカルボニル錯体に、液体二酸化イオウを低温で反応させると、二酸化イオウが C-M 結合間に挿入される。(51) (52) を生じる。
-30℃でジアゾメタンで処理すると、メチレンがIr-Cl間に挿入された-σ型錯体(60)が生成する。CD$_2$N$_2$を用いた実験その他によって構造(60)が確かめられた。

フェニル(ブロムジクロメチル)水銀(61)はカルベンイド試薬として知られているが、テトラリアルキルシランおよびテトラリアルキルスタベンのβC-H結合に対しCCl₃挿入反応を行わない、収率もよい49。ほとんどのβC-Hとのみ反応していることは特異的である。(56)型のイソプロピルベンジルアルコールは、

$$\text{C}_6H_5MgBr + \text{PhSO}_2\text{N-N=C,H}_5 \rightarrow \text{PhSO}_2\text{N-N=C,H}_5$$

生成するからである43。同様な反応(12)がすでに認められている43。一種のアリル型グリニャール試薬(71)

$$\text{PhHO-C}_6\text{H}_5\text{CH}=\text{C}=\text{C}_2\text{H}_4 + \text{CH}_2=\text{CCHMgBr}$$

を種々の求電子試薬(二酸化炭素、アセトンアルデヒド、アセトンなど)と反応させると、cis-二重結合型付加体がtrans型よりも多くできる44。遷移状態の(72)がかならしカルボニオン性となるために、アリルグリニャール試薬とカルボニル化合物との反応では環状の遷移状態をとらないと考えられる43。

$$\text{CHCH}_=\text{CHCH}_2_\rightarrow \text{CHCH}=\text{CHCH}_2$$

活性なグリニャール試薬(たとえばアリルマグネシウムプロミド(65))はアリルアルコールのC=C結合に付加することがわかった。(65)2.5 mol とアリルアルコールをエーテル中50 hr反応させると50%収率で付加体(66)が得られる。アリルアルコールの二重結合炭素に

$$2\text{CH}_2=\text{C}=\text{CH}_2 + \text{MgBr} \rightarrow \text{CH}_2=\text{C}=\text{CH}_2$$

メチル基が置換すると反応は遅くなる。ベンジルマグネシウムクロリドも同様の付加をするが、反応性は悪い。反応中に間体として(67)が生成しているらしい。D₂O,

$$\text{CH}_2=\text{CH}_2 \rightarrow \text{CH}_2=\text{CH}_2$$

V付加反応

活性炭なグリニャール試薬(たとえばアリルマグネシウムプロミド(65))はアリルアルコールのC=C結合に付加することがわかった。(65)2.5 mol とアリルアルコールをエーテル中50 hr反応させると50%収率で付加体(66)が得られる。アリルアルコールの二重結合炭素に

$$2\text{CH}_2=\text{C}=\text{CH}_2 + \text{MgBr} \rightarrow \text{CH}_2=\text{C}=\text{CH}_2$$

メチル基が置換すると反応は遅くなる。ベンジルマグネシウムクロリドも同様の付加をするが、反応性は悪い。反応中に間体として(67)が生成しているらしい。D₂O,

$$\text{CH}_2=\text{CH}_2 \rightarrow \text{CH}_2=\text{CH}_2$$

V付加反応

活性炭なグリニャール試薬(たとえばアリルマグネシウムプロミド(65))はアリルアルコールのC=C結合に付加することがわかった。(65)2.5 mol とアリルアルコールをエーテル中50 hr反応させると50%収率で付加体(66)が得られる。アリルアルコールの二重結合炭素に

$$2\text{CH}_2=\text{C}=\text{CH}_2 + \text{MgBr} \rightarrow \text{CH}_2=\text{C}=\text{CH}_2$$

メチル基が置換すると反応は遅くなる。ベンジルマグネシウムクロリドも同様の付加をするが、反応性は悪い。反応中に間体として(67)が生成しているらしい。D₂O,
三塩化ロジウムとアクリロニトリルをエタノール中で
還元して生じる錯体を55℃のビリジン中で処理すると、
付加物 (82) ができる。前記にロジウム化合物 (81) が
生じ Rh-H がアクリロニトリルの二重結合に付加した
ものと考えられる14)。

\[\text{L}_3\text{RhCl}_3 + \text{HC} = \text{NH} \rightarrow \text{L}_3\text{RhCl}_2 (\text{Py}) + \text{HC} \text{CH-CN} \]
(81)

白金水素化合物 (83) とテトラシアノエチレンとは室温で
容易に反応し (84) の σ-型構造と考えられる付加体を生
じる15)。 (83) やエチレンとの反応が困難なのでくらべ
興味深い16)。

\[\text{trans-(PEt}_3)_2\text{PtCl}_2 \rightarrow \]
(83)

オキサイソフィルアミンシアンニド (76) は α, β-不飽和
ケトンに容易に 1,4-付加をする。場合によっては 1,2-

\[\text{HO} \]
(74)

付加 (14) も起る13).

有機スズ化合物 (77) の炭素-炭素不飽和結合への付
加 (hydrostannation) は一般に遊離基機構で進むと考え
られている13) が、炭素-ヘテロ原子二重結合への付加で
はイオン機構が考えられている13)。アクリロニトリルと
の反応では、つねにスズの α-付加 (78)、β-付加 (79)
の両者が起こり溶液の極性が増すと (78) の生成速度が
増すが、(79) は影響を受けないので。アソビスイソブチロニ
トリルの添加は β-付加を著しく増す。α-付加速度は

\[\text{Ph}_3\text{SnH} + \text{Me}_2\text{SnH} \rightarrow \text{Ph}_3\text{SnH} + \text{Me}_2\text{SnH} \]

の順である。したがって、α-付加はイオン機構であり、
β-付加は遊離基機構と推定した13)。強い電子吸引基があ

\[\text{CH}_2=\text{CH-CN} + \text{R}_3\text{SnH} \]
(77)

付加 (14) も起る13).

イソソシアノアミド (73) の反応も起ることはもちろら
いう。アクリロニトリルメチルでは (79) 型のみ生じる。

\[\begin{align*}
\text{C} & \equiv \text{C} \equiv \text{CN} \\
\text{C}_3\text{H}_5\text{Sn} & \subset \text{Sn} \subset \text{H} \subset (80)
\end{align*} \]

イソソシアノアミド (73) の反応も起ることはもちろら
いう。アクリロニトリルメチルでは (79) 型のみ生じる。

\[\begin{align*}
\text{C} & \equiv \text{C} \equiv \text{CN} \\
\text{C}_3\text{H}_5\text{Sn} & \subset \text{Sn} \subset \text{H} \subset (80)
\end{align*} \]
α-二重有機化合物の二三の反応

\[
\text{PhHgCCl}_2\text{Br} \quad + \quad \text{C}==\text{C}< \quad \xrightarrow{\text{R: i-Pr, CsH}_3} \quad \text{PhHgBr}
\]

（92）

させるとき，C=N 結合の切断がおこりジクロアルダメチル（96）とイソニトリルが好収率でできる。類似の反応がアソベンゼン（97）でも起こる。Simmons-Smith 反応に似た遷移状態（95）が提案された（95）。

\[
\text{PhHgCCl}_2\text{Br} \quad + \quad \text{R}==\text{C}==\text{C}==\text{C}==\text{C}==\text{C}< \quad \xrightarrow{\text{R}: \text{Me}, \text{Ph}} \quad \text{PhHgCl}_2\text{Br} \quad + \quad \text{R}==\text{C}==\text{C}==\text{C}==\text{C}<
\]

（96）

VI. 転位反応，異性化反応

1-クロル-2,2-ジアリールピリリチウム（98）はアリール基の転位を起こすジアリールアセチレン（99）を生成する。転位の起こり易さは π-置換基の場合 Cl＜H＜CH<CH<HO の順である。すでに述べたようにこの転位反応は THF 中ではエーテル中にかくべく著しく遅くなる（101）。置換基効果はアリール基への求電子的置換 S_N1 機構（移動状態（100））を暗示している。α-メトキシル体ではフラン誘導体への環化反応も競争的におきるが，（102），これもメトキシル基酸素への同様の求電子反応と考えた（103）。

\[
\text{PhCHOCHR}_2 \quad \xrightarrow{\text{Li}} \quad \text{PhCHOCHR}_2\text{Li}
\]

（102）

α-リチウム化ペンジアルキルエーテル（101）は転位（Wittig 転位）と脱離反応を行なう。光学活性の R-2-

\[
\text{C}_2\text{H}_5\text{Cl} \quad + \quad \text{PhHgCl}_2\text{Br} \quad \xrightarrow{\text{R}: \text{Me}, \text{Ph}} \quad \text{C}_2\text{H}_5\text{OH} \quad + \quad \text{R}==\text{C}==\text{C}==\text{C}==\text{C}<
\]

（101）

<table>
<thead>
<tr>
<th>R</th>
<th>転位%</th>
<th>脱離%</th>
<th>脱離/転位</th>
</tr>
</thead>
<tbody>
<tr>
<td>エチル</td>
<td>45</td>
<td>55</td>
<td>1.2</td>
</tr>
<tr>
<td>n-プロピル</td>
<td>46</td>
<td>54</td>
<td>1.2</td>
</tr>
<tr>
<td>t-ブチル</td>
<td>38</td>
<td>62</td>
<td>1.6</td>
</tr>
<tr>
<td>t-プロピル</td>
<td>73</td>
<td>27</td>
<td>0.4</td>
</tr>
<tr>
<td>sec-ブチル</td>
<td>79</td>
<td>21</td>
<td>0.3</td>
</tr>
<tr>
<td>tert-ブチル</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tert-アミル</td>
<td>98</td>
<td>2</td>
<td>~0</td>
</tr>
<tr>
<td>3,7-ジメチル-1-オクチル</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>α-メチルペンジル</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

nの相対安定性は

\[
\text{X}==\text{C}==\text{C}==\text{C}==\text{C}==\text{C}< \quad \xrightarrow{\text{R}: \text{Me}, \text{Ph}} \quad \text{X}==\text{C}==\text{C}==\text{C}==\text{C}<
\]

（102）

nの順であることが確かめられたが，1-ノルボニル（102），1-アボカドフェルでは転位が全くおきないので，転位は R= の安定性とは無関係にみえる。したがって， tert-アルキルペンジアルエーテルの転位ではラジカル間裂-再結合機構（17）が提案された（104）。

\[
\text{PhCHOCHR}_2 \quad \xrightarrow{\text{Li}} \quad \text{PhCHOCHR}_2\text{Li}
\]

（102）

プロペニトリメチルスズ，ゲルマニウム，ケイ素にエーテル溶媒中でリチウムジスパーチョンを作用させると表 7 のように，回収原料に cis-trans 異性化が起る（105）。
表7 (CH₃)₃M–CH=CH₂のLiによる異性化

<table>
<thead>
<tr>
<th>M</th>
<th>構造</th>
<th>溶媒</th>
<th>反応時間hr</th>
<th>回収%</th>
<th>cis%</th>
<th>trans%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn</td>
<td>cis</td>
<td>Et₂O</td>
<td>9〜80</td>
<td>21</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>THF</td>
<td>24</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>cis, trans</td>
<td>Et₂O</td>
<td>670</td>
<td>変化なし</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis</td>
<td>THF</td>
<td>27</td>
<td>72</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>THF</td>
<td>27</td>
<td>8</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>cis, trans</td>
<td>Et₂O</td>
<td>6</td>
<td>42</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>cis</td>
<td>THF</td>
<td>6</td>
<td>46</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

アルカリアルキルグリニャール試薬(104)はシクロプロピルカルピニル誘導体(105)を経て、α,β-炭素の変換を行う。平衡に達する半減期は27℃で30hr と速いが、

CH₃=CH–CH–CD₂MgX ⇌

D₄C
H₂C

(105)

r, r-ジフェニル体では速く室温5hrで平衡に達する(14)。 (105)型は不安定で、r, r-ジフェニル誘導体では平衡時の濃度は0.3%以下と推定される。シクロプロピルカルピニルプロミドからジェチルアルチル中-24℃でつくったグリニャール試薬(105)を酸分解し、生成するメチルシクロプロパノンとベンタンの分布をしらべたところ、 (105)→(104)の転位の半減期は-24℃でも2hr とあまり遅い(14)。 (105)型はカリウム(106)またはナトリウム化合物(107)では安定であり、また図2のような相互関係があることがわかった(19)。

図2 ジフェニルシクロプロピルカルピニル r, r–ジフェニルアルキルカルピニル金属化合物間の転位反応

非環式オレフィンのハイドロポレーショーンに生成するアルキルカルホルンは、ジェチルグリニャールジェチルエチル中100〜160℃で急速に異性化し、ホウ素が末端炭素と結合した異性体が圧倒的にできる。生成物をアルカリ性過塩素酸で酸化するとアルコールの分布(表8)からわかる。異性化は過剰のハイドロポレーショーン試薬によっていちじるしく接触される。脱離-付加機構(デバイドポレーショーン-ハイドロポレーショーン)(18)が提案された。これを裏付ける事実として(19)がある(19)。トリニ-
VI. 交換反応その他

メタレーショの例として次の反応がある。フェニルアセトニトリル（111）をTHF-ヘキサン中で1 mol よりわずか過剰のプチルチウムで処理するとモノチウム化合物（112）となり、2.25 mol のプチルチウムで処理するとジチウム化合物（113）となる。（113）が出てくる証拠は、D₂O で処理すると（114）が得られ、臭化プチルおよび塩酸エチレンで処理するとそれぞれ（115）、（116）が得られる事実による。同様にアセトメンチレンも過剰のプチルチウムでジチウム化（117）される

\[
C_6H_5CH_2CN + BuLi \rightarrow C_6H_5CHLiCN + BuLi \rightarrow C_6H_5CLi_2CN
\]

（111）

ナトリウム tert-ブロックンと少し過剰の n-アルキルチウムとをヘプタン中で反応させると、金属交換反応がおき高純度の n-アルキルナトリウム（118）が得られる。

\[
(CH_2)_nCONa + n-RLi \rightarrow (CH_2)_nCOTLi
\]

（118）

得られる。カリウム tert-ブロックンでは単純な組成の有機カリウム化合物を単離できない[22]。対称置換型のジアリール水銀（119）と金属水銀間の金属交換反応（20）の速度におよぶ置換基効果を生成物（120）中の^{199}Hg を測ることによって示された。log_k = 1.0e(30°C)

\[
XeC_6H_5-Hg-C_6H_5X + ^{199}Hg \rightarrow XeC_6H_5-^{199}Hg-C_6H_5X + Hg
\]

（119）

ペンゼン

\[
(X-H-o-, m-, p-Cl, o-, m-, p-CH=CH, o-, p-, CH=CH_2)
\]

の関係が得られ、isokinetic relation ship 4H* = 4ΔH* + 4ΔS*（β = 384K）が成立する。（121）のような四中心型移動状態が仮定された。
不均化反応の例として次のものがある。過剰のジェチル亜鉛とテトラクロジメチル亜鉛を 70°C で反応させると、ジェチル亜鉛とテトラクロジメチル亜鉛 (122) が得られる。塩化物、臭化物ははっきりした前駆物をもつ、ヘキサシ、トルエンなど

\[\text{(C}_2\text{H}_5)_2\text{Zn} + \text{ZnX}_2 \xrightarrow{70^\circ\text{C}} \text{C}_2\text{H}_5\text{ZnX} \]

(122)

の非プロント非極性溶媒に可溶で、トルエン中では低量体である。すなわち上の溶媒中では Schlenk の平衡 (21) は全く右にかたよっている。これと異なリョウ化物の場合は上記溶媒に溶かすとヨウ化亜鉛が析出する。

tert-プチル a-プロムマーキュリフェニルアセテート (123) のアンモニアによる不均化反応の速度を、生成物 (124) の tert-プチル基の pnm 測定で示した。速度は (123) およびアンモニアのそれぞれに二次であり、生成物 (124) の抑制作用は、アンモニア濃度で反応は完結する。アンモニアとの前駆体形成を含む機器

\[\text{2Ph-CH-} \text{-COO} \text{Bu}^+ + \text{NH}_3 \xrightarrow{\text{HgBr}} \text{NH}_2 \text{CHCH} \text{-COO} \text{Bu}^+ \]

(123)

\[\text{Bu}^\text{OOC-CH-Hg-CH} \text{-COO} \text{Bu}^+ + \text{HgBr}_2 \]

(124)

\[\text{R}\text{HgBr} + 2\text{NH}_3 \xrightarrow{\text{fast}} \text{R-Hg-Br} + \text{NH}_3 \]

\[\text{R}\text{HgBr(NH}_3\text{)}_2 + \text{R}\text{HgBr} \xrightarrow{\text{slow}} \text{R}_2\text{Hg} + \text{HgBr}_2(\text{NH}_3\text{)}_2 \]

(22)

が提案された。この機構は電子供給性置換基 (Y) をもった化合物 (125) 中の水銀が生成物 (126) 中に主に入る結果と矛盾しない。

\[\text{HCHO-CH-HgBr} \xrightarrow{\text{NH}_3} \text{X} \xrightarrow{\text{Y}} \text{CH-CHO} \text{-COO} \text{Et} \text{HgBr} \]

(125)

\[\text{X} \xrightarrow{\text{Y}} \text{CH-CHO} \text{-COO} \text{Et} \text{HgBr} \]

(126)

テトラクロジメチルホスホニウムブロミド (127) にピニルリチウム、イソプロペニルリチウムをエーテル (または THF) 中で作用させると、60～70% 収率でそれぞれスチレン、α-メチルスチレンが生成しトリフェニルホスフィンが遊離する。テトラ p-トリルホスホニウムプロミドとピニルリチウムからは、同様に p-メチルスチレンが生じる。-30°C では反応は遅いが、室温では速い。中間体としてピニルテトラフェニルホスホラン (128) が生成し、この分解によってスチレン類とトリフェニルホスフィンが生成するのである。 (127) と 1-プロペンイ

\[\text{[Ph}_3\text{P}\text{Br} + \text{CH} = \text{CHLi} \rightarrow \text{[Ph}_3\text{P}\text{CH} = \text{CH}_2} \]

(127)

\[\rightarrow \text{PhCH} = \text{CH}_2 + \text{PhP} \]

(128)

ルリチウムとの反応では β-メチルスチレンの収率は低く、ベンゼンを多く生成し、また反応生成物をベンゼンア ルデヒドで処理すると 1-フェノルプロピエンが生成す る。したがって、中間体 (129) からはイド型化合物 (130) もできると考えられる。 (127) とアルキルリチウムとの THF 中の反応で (130) 型のトリフェニルホスフィンアリルキデン (131) が生成することはすでにわ かっている。

\[\text{[Ph}_3\text{PCH} = \text{CHCH}_2} \rightarrow \text{Ph}_3\text{POH} + \text{CH} = \text{CH}_2 + \text{C}_2\text{H}_4 \]

(129)

(130) + PhCHO → Ph-CH=CH=CH=CH + Ph,PO

PhBr + RICHLi → [Ph3P,RC]

(131)

エーテルの存在で、ハロゲン化ベンジル型化合物 (132) にトリエチルアルミニウムを反応させると、主として (132) のエチル化が起こる。副反応として還元も起こる。 hindered phenol 化合物 (133) に過剰の臭化エチルマグ ネシウムを反応させると 65～80% 収率でプロピル誘導 体 (134) が得られる。

\[\text{R} : \text{tert-Bu, iso-Pr, C}_6\text{H}_5 \text{など} \]

(135)

\[\text{[HO-CH} \text{-CH} \text{-Br} + \text{EtMgBr}\rightarrow \text{HO-CH} \text{-CH} \text{-CH}_2 \text{Br} \]

(134)

\[\text{HO} \xrightarrow{\text{EtO}} \text{HO-CH} \text{-CH} \text{-CH}_2 \text{Br} \]

(136)

(137) (X, Y, Z, Br, OOCCH3)

\[\text{X} \rightarrow \text{PhHgX} + \text{NaOR} \rightarrow \text{PhHgOR} \]

(135)

\[\text{HCl} \rightarrow \text{PhHgCX} \rightarrow \text{PhHgOX} \]

(136)

\[\text{HCX} \rightarrow \text{PhHgCX} \rightarrow \text{PhHgCX} \]

(23)

(137) (X, Y, Z, Br, OOCCH3)

\[\text{HCX} \rightarrow \text{HCCl}, \text{HCBrCl}, \text{HCBrCH}, \text{HCBr} \]

(136)

\[\text{PhHgOH} + \text{ROH} \rightarrow \text{PhHgOR} \]

(136)
文献
1a) 大塚、有合 24 351 (1966) 「π-配位子の反応」
b) G. Wilke et al, Angew. Chem. 78 157 (1966)
2) P.361 reduce the content.
24) "Allyl—Vergangsmetall—Systeme" vol 2, p 1 (1964)
36) "Advanced in Organonmetallic Chemistry," vol 12, p. 1 (1964)
37) P.364 reduce the content.
39) R. van Helden, G. Verberg, Rec. Trav. Chem. 84 1263 (1965)
40) J.M. Davidson, C. Triggs, Chem. & Ind. 1966 457
22) 文献 1a) p. 361 参照
24) R. Cramer, J. Am. Chem. Soc. 87 4717 (1965)
25) 文献 1a) p. 364
29a) R.B. King, M.B. Bisnette, Inorg. Chem. 5 293 (1966)
b) R.B. King, M.B. Bisnette, Inorg. Chem. 4 486 (1965)
32a) R. Wright, Chem. Comm. 1966 197
33) F. Blanchard, H.E. Simmons, J. Am. Chem. Soc. 86 1337 (1964)
34) F.P. Blanchard, H.E. Simmons, J. Am. Chem. Soc. 86 1337 (1964)
35) L.R. Barlaw, J.M Davidson, Chem. & Ind. 1965 1656
b) J.P. Bibler, A. Wojcicki, J. Am. Chem. Soc. 86 8051 (1964)
38) H. Hoberg, Angew. Chem. 78 1652 (1966)
46) 安田, 川端, 小田, 鶴田, 工化 69 121 (1966)
51) タとえば W.P. Neumann, R. Sommer, Ann. 675 10 (1964)
52) タとえば W.P. Neumann, E. Heymann, Ann. 683 11 (1965)
54) K.C. Dewhirst, Inorg. Chem. 5 319 (1966)
58) H.C. Clark, W.S. Tsang, Chem. Comm. 1966 123
60) D. Seyferth, R. Damrauer, Tetrahedron Letters 1966 189
63a) U. Schöllkopf, W. Fabian, Ann. 642 1 (1961)
b) U. Schöllkopf, H. Schafer, Ann. 663 22 (1963)
c) P.T. Lansbury, V.A. Pattison, J. Org. Chem. 27 1933 (1962)
64) P.T. Lansbury, V.A. Pattison, J.D. Silder, J. Am. Chem. Soc. 88 78 (1966)
70) D. Seyferth, B. Prokai, J. Am. Chem. Soc. 88 1834 (1966)
74) J. Boersma, Tetrahedron Letters 1966 1521
78) D. Seyferth, W.B. Hughes, J.K. Heeren, J. Am. Chem. Soc. 87 3467 (1965)
87) J.H. Short, J. Chem. Soc. (C) 1966 313