セレンおよびセレン化合物を用いる有機合成

園田 昇*・近藤 清*

Organic Synthesis with Selenium and Selenium Compounds

Noboru Sonoda* and Kiyoshi Kondo*

Recent advance in organic synthesis by use of selenium and selenium compounds was reviewed.

1. はじめに

セレン（Selenium, Se）は周期表第ⅥA族（酸素族）第4周期の元素である。セレンの利用はその物理的・化学的性質に着目して製剤機械材料や半導体として用いられ、またとくに光に対する特性により光電池、電導写真、ゼログラフィー等の材料として使用されている。

一方、化学の分野での利用をみると、同族の硫黄の化学が大きい進歩をとげ、種々の利用がなされているのに対し、セレンの化学は今日まであまり大きな進歩はみられなかった。ただセレン特有の利用形態として二酸化セレンの酸化剤としての利用があり、その反応挙動がかなり特異的であることから有機合成における有用な試薬の一つとして注目されてきた。近年に至り、生化学ではセレンとガニの相関関係（たとえば制ガニ性）が検討され、また代謝酵素アルカチオンペルオキシダーゼ中のセレンが不可欠の元素であることや、生体内の有機水銀とセレンとの相互作用など、栄養学上の超微量必須元素としてのセレンの重要性などが指摘されている。

しかし最近の硫黄の化学およびその利用の進歩と相まって、セレンもまたセレン化合物の化学的利用が検討される一方、それらを材料として利用することも検討され、ことに電子供与性の有機セレン化合物とTCNQなどの電子受容体との電荷移動錯体は異常に高い電気伝導性を有することからOrganic Metal（金属性有機化合物）とし注目されている。

これら各方面から近年、セレンおよびその化合物に関し、強い関心が持たれるようになり、1975年8月には第2回有機セレンとテルルの化学に関する国際会議も開かれ、「最近セレン化学に関する成書も多数刊行されるに至っている。」

2. 有機セレン化合物を用いる有機合成

2.1. セレンオキシドのsyn-脱離反応によるオレフィン類の合成

一般にβ-位に水素を有するスルホキシドを熱分解させるとスルファノ酸を脱離してオレフィンを生成することは古くから知られている。これに対しセレンオキシドは相当するスルホキシドよりも不安定であるため、硫黄化合物の場合よりかなり温和な条件（通電温差以下）でも容易に分解してセレン酸を脱離しオレフィンを生成する。近頃、この脱離を利用した新しいオレフィン類合成法が報告され、多くの場合フェニルセレンとフェニュースルホキシド反応がone pot reactionとして行われ、反応の収率と選択性が極めて高いことから、合成反応として注目されている（式[1]）。

\[
\begin{align*}
\text{PhSe} & \quad \text{H} \\
\text{PhSe} & \quad \text{H}
\end{align*}
\]

\[
\begin{align*}
\text{PhSe} & \quad \text{H} \\
\text{PhSe} & \quad \text{H}
\end{align*}
\]

これらの結果を表1で示したようにジアステレオメリックな2-フェニル-3-フェニルセレンプタンを用いて検討した結果、erythro体からはZ体オレフィンが、threo-

* 大阪大学工学部石油化学教室
* Department of Petroleum Chemistry, Faculty of Engineering, Osaka University
一方Sharplessらはβ-位に水素を有するアルキルフェニルセロノキシドが電解でオレフィンを生成することを利用してエポキシドからアルリアルールの合成を報告した（式[3]）。フェニルセロノアニオンは求核的にエポキシドを捕捉しβ-ヒドロキシセロノキシドを与える（a）。これを単離することなく過剰の過酸化水素で酸化すると安定なセロノキシドを経て（b）、E-アリアルールコールを98%の収率で与える（c）。このような温暖な条件でフェニルセロノキシドの脱離反応を利用するC-C二重結合形成の有機合成反応が展開されているが24-25, 44, 45, 47, 72）。合成のどの段階で脱離させるかとすると水素の結合した炭素の隣の炭素にPhSe-基またはPh-24をいかに導入するかという点が重要である。Ph-Se-基を導入するにはすでに述べたPhSe-を用いる場合、PhSe+を用いる場合およびその他の場合に大別される。

2.1.1. PhSe+ X- を用いる反応 Sharplessらは ([4a]式) によって得られる求電子的なPhSeCl22, 33 を用いる反応を報告した（式[4b]）。 PhSeSePh+Cl2 (or Br2) → 2PhSeCl (or PhSeBr)……[4a]

一般にこの方法によるケトン、アルデヒドからのエノールの合成はあまり好収率でない。しかし次のα, β-不飽和エステルの合成の例でわかるようにカルボニル化合物をリチウムアミドでリチウムエノラートとした後PhSe+を反応させSe-C結合を形成させると高収率になる場合

<table>
<thead>
<tr>
<th>Table 1 Elimination of Diastereomeric Selenoxides</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Selenoxides Elimination Scheme]</td>
</tr>
</tbody>
</table>

(1f) はトルエン中 100℃で (2) をを与えるのに対し、R体 (1e) はその条件ではほとんど分解しない。スルホキシド17) で知られているスルフェン酸の syn-脱離反応が相当するセレノキシド17) ではより温和な条件で進行する。
セレンおよびセレン化合物を用いる有機合成

Table 2 Yields of RCOOEt

<table>
<thead>
<tr>
<th>R</th>
<th>Path A</th>
<th>Path B</th>
<th>Path C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>80</td>
<td>78</td>
<td>65</td>
</tr>
<tr>
<td>CH₃</td>
<td>83</td>
<td>89</td>
<td>60</td>
</tr>
<tr>
<td>n-C₃H₇</td>
<td>79</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

$\text{PhSeNa} + \text{CICH₂COOEt} \rightarrow \text{PhSeCH₂-COOEt}$[6]

この方法により，花の受粉誘引物質であるオクタデカ-(E,2Z,Z)9,12-トリエン酸（4）のメチルエステルが合成された[20]。

次にリチウムエノラートや銅エノラートとPhSeXとの反応による α, β-不飽和カルボニル化合物の合成例をあげる（式[7]〜[11]）。なお式[10]で同じ分子内のPhSeO

リチウムエノラートを用いた合成

α, β-不飽和ケトン[24,27,28,34] 収率（％）

出発物質

RCOOEt[4]

出発物質

α, β-不飽和カルボニル化合物の収率（％）

銅エノラートを用いた合成[26]

出発物質

α-フェニルエステル[27,34] 収率（％）
基とPhSO基とがある場合にはPhSeO基の方が選択的に脱離していることがわかる。

PhSe−X−の重要な反応としてC=C、C≡Cに対する求電子トランス1,2−付加反応がある。たとえばSharplessらはPhSeX（X=Cl, Br, OAc）を用い、オレフィンからアリルアルコール、アリルアセテート、アリルエーテルの合成を行なった（式[12]〜[14]）30）なお付加物（5）を水、酢酸、メタノールの存在下直ちに酸化したとき（6）(7)の混合物を得るが、その比は表3に示した通りである。X=Clの場合、脱離の方向はほとんど等しくなる。

式[15]で得られるフェニルセレニルトリフルオロアセテート（5）は0°Cで瞬時にアセチレン、オレフィンに1,2−付加する（式[16]）。

<table>
<thead>
<tr>
<th></th>
<th>(6):(7)</th>
<th></th>
<th>(6):(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>99.8 : 0.2</td>
<td>OCH₃</td>
<td>98 : 2</td>
</tr>
<tr>
<td>OAc</td>
<td>97 : 3</td>
<td>Cl</td>
<td>51 : 49</td>
</tr>
</tbody>
</table>

Table 3 Direction of Elimination

セレンおよびセレン化合物を用いる有機合成

\[
\text{SePh} + \text{CN} \rightarrow \begin{array}{c}
\text{SePh} \\
\text{CN}
\end{array}
\]

\[
\xrightarrow{\text{2eq. } \text{NLi}} \quad \xrightarrow{\text{THF, } -75^\circ} \quad \xrightarrow{\text{PSeSePh, } 25^\circ}
\]

\[
\text{SePh} + \text{H}_2\text{O}_2 \rightarrow \begin{array}{c}
\text{SePh} \\
\text{CN}
\end{array}
\]

\[
\xrightarrow{\text{E}} 96\% \quad \text{(E/Z = 54/46)} \quad \ldots \ldots \quad [17]
\]

\[
\begin{array}{c}
\text{H} \\
\text{O}
\end{array} + \begin{array}{c}
\text{H} \\
\text{O}
\end{array} \xrightarrow{\begin{align*}
1. \text{exoPr}_2\text{NLi} \\
2. \text{PhSeSePh}
\end{align*}} \begin{array}{c}
\text{O} \\
\text{O}
\end{array} \xrightarrow{\text{H}_2\text{O}_2} \begin{array}{c}
\text{SePh} \\
\text{CN}
\end{array} 88\%
\]

\[
\text{H}_2\text{O}_2 \quad \text{naphthyl}
\]

\[
\text{H}_2\text{O}_2 \quad \text{aryl}
\]

\[
\text{RCH}_2\text{OH} \xrightarrow{\text{ArSeCN/BusP, THF or Pyridine}} \text{RCH}_2\text{SeAr}
\]

\[
\text{CH}_2(\text{CH}_2)_2\text{CH}_2\text{OH} \xrightarrow{\text{ArSeCN/BusP, THF or Pyridine}} \text{SeCN}
\]

\[
\text{CH}_3(\text{CH}_2)_2\text{CH}_2\text{SePh} \xrightarrow{\text{Bu}_3\text{P/THF}} \text{CH}_3\text{SePh} 92\%
\]

\[
\xrightarrow{\text{OAc}} \text{OAc}
\]

\[
\text{OAc}
\]
(22)式。[23] で示されるように優れた Michael 反応体の α, β-エノンはペンゼンセレノアミドと反応しセレノアミノ化を起こし、これを m-クロロ過安息香酸 (m-CPBA) と酸化すると (12) のアリルアミノが主生成物として得られる。(14) は脱離によって生成した PhSeOH と (13) との反応でできるものと考えられる。またアセチレンジカルボン酸ジメチルエステル (15) とペンゼンセレノアミド (16) の反応も試みられている (式 [24]), スルホアミドとの反応性の対比の結果セレンアミドの付加はスルホアミドよりずっと温和な条件でおこることが示唆された。

2.1.4. フェニルセレノオキシド用いる反応　Reich らはフェニルセレノオキシドをついた炭素上に水素をリチウムアミドでリチウム化し (19), 続いてこれにハロゲン化合物、エポキシ、アレフィン、ジエン、アリルアルコール、エノ等を合成している。式 [25] にジエンおよびアリルアルコールの合成能が示す。カルバニオンを経るこの反応では用いるセレノオキシドを合成する際にセレノニトリルを H2O2 で酸化できないので、m-クロロ過安息香酸で酸化する。(式 [23], 式 [23']).

<table>
<thead>
<tr>
<th>Ar</th>
<th>Temp (℃)</th>
<th>Time (hr)</th>
<th>O yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6H5</td>
<td>25</td>
<td>9.5</td>
<td>47</td>
</tr>
<tr>
<td>p-ClC6H4</td>
<td>25</td>
<td>9.5</td>
<td>85</td>
</tr>
<tr>
<td>o-NO2C6H4</td>
<td>25</td>
<td>9.5</td>
<td>92</td>
</tr>
</tbody>
</table>

なお β-脱離ができないフェニルセレノオキシドの場合、たとえばベンジルフェニルセレノオキシドは分解してベンズアルデヒドとジェニルセレノミドを与える (式 [26]) とされる。

PhCH2Se-Ph → Ph-C=H + PhSeSePh ……[26]

2.1.5. 置換フェニルセレノオキシドの置換基効果 [21]

フェニルスルホキシド (PhS=O'K') の熱分解脱離反応は電子供与性置換基を有するアリルスルホキシドの方が電子供与性置換基を有するものよりもより速く進行することが知られている。これに対しアリルセレノオキシドの脱離の際も同様の傾向が示された。脱離する PhSe- 基が一級炭素についている場合と、アルキル錠の α 位もしくは α 位に置換基がある場合などの置換基効果は著しくより好ましい結果が得られる (式 [27], 表 4), (式 [19])。

ArSe-CH=CH2 (O) ArSeOH

2.1.6. 合成反応への利用　最近 Grieco ら [35-45, 53-58] は抗腫瘍性物質であるセスキーペルベン Vernolepin (17) と Table 4 Decomposition of Aryl Cyclohexylmethyl Selenoxide

<table>
<thead>
<tr>
<th>Ar</th>
<th>Temp (℃)</th>
<th>Time (hr)</th>
<th>O yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6H5</td>
<td>25</td>
<td>9.5</td>
<td>47</td>
</tr>
<tr>
<td>p-ClC6H4</td>
<td>25</td>
<td>9.5</td>
<td>85</td>
</tr>
<tr>
<td>o-NO2C6H4</td>
<td>25</td>
<td>9.5</td>
<td>92</td>
</tr>
</tbody>
</table>

なお β-脱離ができないフェニルセレノオキシドの場合、たとえばベンジルフェニルセレノオキシドは分解してペンズアルデヒドとジェニルセレノミドを与える (式 [26]) とされる。

PhCH2Se-Ph → Ph-C=H + PhSeSePh ……[26]

2.1.5. 置換フェニルセレノオキシドの置換基効果 [21]

フェニルスルホキシド (PhS=O'K') の熱分解脱離反応は電子供与性置換基を有するアリルスルホキシドの方が電子供与性置換基を有するものよりもより速く進行することが知られている。これに対しアリルセレノオキシドの脱離の際も同様の傾向が示された。脱離する PhSe- 基が一級炭素についている場合と、アルキル錠の α 位もしくは α 位に置換基がある場合などの置換基効果は著しくより好ましい結果が得られる (式 [27], 表 4), (式 [19])。

ArSe-CH=CH2 (O) ArSeOH

2.1.6. 合成反応への利用　最近 Grieco ら [35-45, 53-58] は抗腫瘍性物質であるセスキーペルベン Vernolepin (17) と
セレンおよびセレン化合物を用いる有機合成

の合成に成功しており、その途中いくつかの段階でセレノオキシドのsym-脱離反応を利用している。なおVernolepin中に存在するようなα-メチレンラクトン骨格にPhSe⁻のMichael付加反応でPhSe⁻基を導入することはができるが、それを酸化しPhSe⁻基にして脱離反応をおこなうとメチレン部が再生されるので、retro-Michael反応が成立する。結果的にα-メチレンラクトンの保護基としてPhSe⁻基を用いたことになる(式[28])。

2.2. フェニルセレノオキシドの[2,3]シグマトロピ

シグマトロピーを経る脱離反応の応用 一般にPhSe⁻基がアリル位にあるとき、sym-脱離と充分競争できる速さで[2,3]シグマトロピー転位を経て脱離反応が進行する(式[29], 30, 21, 22, 23, 90, 91)。

たとえばReichらはフェニルセレノアリルリチウム化合物をアルカリ化した後、酸化し[2,3]シグマトロピを行わせ、アリルアルコールやエノンの優れた合成反応を報告している(式[30])。なおアルコールホキシドの反応に関してはEvansらの報告がある。

2.3.1. セレノニウム塩またはセレノニウムイリドを用いる合成 セレンのイリドは1967年Lloydらによって最初に合成された(式[31])。その後安定なセレノニウムイリドの合成法としてモノセレニドジクロロド(19)
有機合成化学 第35巻第10号（1977）

(8)

と活性メチレンとの反応（式[32]）⁷⁸，セレニウムイミド
（20）活性メチレン化合物との反応（式[33]）⁸¹，⁸²，⁸³ が示
された。安定なセレニウムイリドであるジアセチルメチレンジフェニルセレニラン（Ph₂Se = C（COMe）₂）についてはX線構造解析がなされている⁷⁸。なおセレニラン
（Selenurane）はスルフララン（Sulfurane）に相当する呼
び方で4置換のセレン（IV価）化合物をさす。Gosseleckら
はセレノノウム塩（21）よりイリド（22）を合成し，Michael
受容体（23）との反応でジクロプロパン誘導体（24）の合
成を行った（式[34]）⁸¹ [収率81〜91％]。塩基のNaOH
が过剩のとき（24）−cis体と（24）−trans体の混合物が,
塩基が少ないととき cis−体のみが，また単離したイリド（22）
とベンジリデンアセトフェノン（23）との反応では trans
体のみが得られる。

Kriefらもイリド（25）とカルポニル化合物との反応に
よるエポキシド類の合成反応も報告している（式[35]）⁸⁰。
またβ−ヒドロキシセレニド（26）をヨウ化メチル−銀フ
ルオポラートまたはジメチル硫酸でβ−ヒドロキシセレ
ノウム塩（27）とし室温でt−ブトキシカーテルとDMSO
中で反応させるとメチルフェニルセレニドが脱離しエポ
キシドが60〜80％の収率で得られる（式[36]）⁸¹。この
反応過程で通ると考えられるベタイン構造中間体（28）は
セレノノウムイリド（29）がカルポニル化合物に付加

![化学式](image-url)
2.3.2 セレノールを用いる合成 同族化合物であるフェニルメチルエーテル、フェニルメチルスルフィド、およびフェニルメチルセレンとn-ブチルリチウムとの反応生成物には差異があるが、すなわち酸素、硫黄化合物の場合メチル基の炭素-水素結合が開裂するのに対し（式[39]）、塞伦化合物の場合炭素-水素結合は開裂せずにフェニル炭素とセレンの結合が切れる（式[40]）。

\[
\text{PhXCH}_3 + n - \text{BuLi} \rightarrow X = \text{O, S} \\
\text{PhX - CH}_3 \text{Li} + n - \text{Bu-H} \cdots \cdots [39]
\]

PhSeCH$_3$ + n - BuLi → PhLi + n - Bu - Se - CH$_3$ – [40]

そこでSeebachらはPhSeCH$_2$Liを合成するのにフェニルセレノールをホルムアルデヒドと反応させ生成したピリジンでメチレン化した場合は（フェニルセレノ）メタン（30）とブチルリチウムとのメタル交換でPhSeCH$_2$Li（31）を生成し、ペンゾフェノンと反応させることによりアルコール（32）として確認している（式 [41]）。そこでセレン（フェニルセレノ）メタン（30）とリチウムジソブチルアミドとの反応では

\[
\text{PhSeH} + \text{HCO}^{-} \rightarrow (\text{PhSe})_3 \text{CH}_2 \\
(30) \quad (i - \text{Bu})_2 \text{NLi} \downarrow n - \text{BuLi} \\
\downarrow (\text{PhSe})_3 \text{CHLi} \\
\downarrow \text{PhSe} - \text{CH}_2 \text{Li} + \text{PhSeBu-n} \quad \text{PhSe} - \text{CH}_2 \text{CPh}_3 \quad \text{PhCO}^{-} \\
(31) \quad \text{PhCO}^{-} \downarrow \text{PhCO} \\
\text{PhSe} - \text{CH}_2 - \text{CPh}_3 \quad \text{PhSe} - \text{CH}_2 - \text{CPh}_3 \quad \text{PhCO}^{-} \\
\text{OH} \\
(32) \quad \text{OH} \quad \text{OH} \quad \text{OH} \\
\cdots \cdots [41]
\]

（30）のメチレンの水素がリチウム化されるのをペンゾフェノンと反応させてアルコール（33）として確認している。

2.4. セレンイミド化合物によるアミノ化合物合成反応

二酸化セレンと同じ4価のセレン化合物である四塩化セレン（SeCl₄）と一吸アミノとの反応（式[46]）で得られるセレンイミド化合物（38）を用いるオレフィン、アセチレン類のアミノ化反応がSharplessらによって報告された。[46]

SeCl₄ + 4RN₃ → R – N = Se = N – R ……[46]

セレンイミド化合物を得るより簡単な方法はクロラミンT(TsNCINa)とSeとの反応によるものである（式[47]）。

Se + 2TsNCINa → Ts – N = Se = N – Ts ……[47]

さてこうして得られたセレンイミド化合物はオレフィン、アセチレン類のアリル位アミノ化反応を行い、また1,3-ジエニには1,2-ジアミノ化反応を行うことがSharplessらによって報告された。たとえば式[48]にβ-ピネンのアリル位アミノ化反応を示す。その反応過程について

\[
\text{R} \quad \text{Se} \quad \text{N} \quad \text{R} \quad \xrightarrow{\text{BuLi}} \quad \text{NHR}
\]

R = t-Bu, 62% R = Ts, 82%

(38)

さらに、\[\text{R}^1 \text{R}^2 \text{R}^3 \text{CH} \xrightarrow{\Phi} \text{R}^1 \text{R}^2 \text{SeH} \rightarrow \text{R}^1 \text{R}^2 \text{SeR} \xrightarrow{\text{BuLi}} \text{Me} – \text{Se} – \text{Me} \xrightarrow{\text{O}} \xrightarrow{\text{Ph}} \text{MeSe} \xrightarrow{\text{MeOH}} \text{MeOH} \xrightarrow{\text{R, R', R" = Me}} 80\% \]

(36)

さらに、\[\text{R}^1 \text{R}^2 \text{R}^3 \text{CH} \xrightarrow{\Phi} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{RSeH}} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{BuLi}} \text{Me} – \text{Se} – \text{Me} \xrightarrow{\text{O}} \xrightarrow{\text{Ph}} \text{MeSe} \xrightarrow{\text{MeOH}} \text{MeOH} \xrightarrow{\text{R, R', R" = Me}} 48\% \]

(38)

さらに、\[\text{R}^1 \text{R}^2 \text{R}^3 \text{CH} \xrightarrow{\Phi} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{RSeH}} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{BuLi}} \text{Me} – \text{Se} – \text{Me} \xrightarrow{\text{O}} \xrightarrow{\text{Ph}} \text{MeSe} \xrightarrow{\text{MeOH}} \text{MeOH} \xrightarrow{\text{R, R', R" = Me}} 48\% \]

(38)

さらに、\[\text{R}^1 \text{R}^2 \text{R}^3 \text{CH} \xrightarrow{\Phi} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{RSeH}} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{BuLi}} \text{Me} – \text{Se} – \text{Me} \xrightarrow{\text{O}} \xrightarrow{\text{Ph}} \text{MeSe} \xrightarrow{\text{MeOH}} \text{MeOH} \xrightarrow{\text{R, R', R" = Me}} 48\% \]

(38)

さらに、\[\text{R}^1 \text{R}^2 \text{R}^3 \text{CH} \xrightarrow{\Phi} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{RSeH}} \text{R}^1 \text{R}^2 \text{OH} \xrightarrow{\text{BuLi}} \text{Me} – \text{Se} – \text{Me} \xrightarrow{\text{O}} \xrightarrow{\text{Ph}} \text{MeSe} \xrightarrow{\text{MeOH}} \text{MeOH} \xrightarrow{\text{R, R', R" = Me}} 48\% \]

(38)

\[
\begin{align*}
\text{NTs} & \text{NTs} \\
\text{S} & \text{S} \\
\text{H} & \text{H}
\end{align*}
\]

(40)

へのene系の変換を経た[2,3]シグマトロピー反応によって得られる。式[49]に示した硫及びN₄Ts

\[
\begin{align*}
\text{NTs} & \text{NTs} \\
\text{S} & \text{S} \\
\text{H} & \text{H}
\end{align*}
\]

(41)

イミド化合物(40)によるメチレンジクロヘキサン(41)のアリール位アミノ化反応と同様の機構と考えられる[28]。つきに1,3-ジエン類の1,2-ジアミノ化反応をシクロヘキサジェンを用いて行った結果を示す式(50)[29]。

\[
\begin{align*}
\text{N₂Se-NTs} & \text{K₂CO₃} \\
\text{MeOH/H₂O} & \text{84%}
\end{align*}
\]

……[49]

2.5. セレンオキシの合成とその反応 一般にセレンオキシやセレンアルデヒドは硫黄化合物として存在するが最近リマッサのセレンオキシ(42)が式(51)に従って合成可能であった。ジ-1-プチルセレセレンのジフェニルホスホラニリデンと総合したとトリ-n-プチルアミン存在下、窒素中120℃、20時間反応させ、ジ-1-プチルセレセレン(42)を35％の収率で得た(式[51])。この

\[
\begin{align*}
\text{t-Bu} & = \text{Se} \\
\text{t-Bu} & = \text{O+Se}
\end{align*}
\]

(42)

(45)

え、加熱すると窒素とセレンが脱離し1,1-ジ-1-プチル2,2-ジフェニルエチレン(47)を与える(式[53])。この反応は立体的に混じったオレフィンを合成する一つの方法とする可能性がある。

K. U. Ingoldらはジ-1-ブチルセレンオキシにラジカル種が付加し生成したセレンアルキルラジカル(48)にe.s.r.を用いてラジカル種の研究を行っている(式[54])。

\[
\begin{align*}
\text{t-Bu₂C=Se+MR₆} & \rightarrow \\
(t-Bu₂C=Se-\text{MR₆})
\end{align*}
\]

(48)

2.6. エピセレンの合成と考察される反応 エピセレン化合物はオレフィン酸化の変換、合成あるいは配位決定などにおいて重要な反応である。エピセレン
レニドに関する研究は比較的少なく、原子状セレンとオレフィンとの直接反応でエピセレニド（50）の生成することがスペクトル分析の結果をもとに報告されている（式[56]）。また有機セレン化合物のビニル化の過程で

$$\text{Se} + \text{O} = \text{Se} \quad \text{[56]}$$

エピセレニドの生成が示唆されている。

最近、有機合成反応の過程でエピセレニド中間体を経るものと考えられる反応がある。たとえば式[57]のようにトリフェニルホスフィン存在下エポキシドをトリフェニルホスフィンセレニドと反応させると立体特異的にオレフィンが生成する。同一条件下、ホスフィンセレニドの代わりにトリフェニルホスフィンスルフィドを用いると、エピスルフィド（52）が単離される。立体特異的にオレフィンを与える前駆体はエピセレニド（51）で、これは熱的に不安定なので分解してオレフィンとセレンになる。それと類似の反応でエポキシド、エピスルフィドをオレフィンに立体特異的に還元する反応がある（式[58]）。

$$\text{O} \quad \text{Ph} = \text{Se} \quad \text{CF_2COH} \quad \rightarrow \quad \text{Ph} \quad \text{Se} \quad \text{[51]}$$

2.7. SeF₄を用いる有機フルオロ化合物の合成反応

G. A. Olah は、SeF₄（57）をフルオロ化剤として用いた合成反応を報告している。SeF₄は次式によって合成される（式[61]）。

$$\text{Me} \quad \text{Se} + \text{Y} = \text{Me} \quad \text{Se} \quad \text{[53]}$$

$$\text{S} \quad \text{Me} \quad \text{Se} \quad \text{[54]}$$

$$\text{Me} \quad \text{Se} \quad \text{[54]}$$

～式[60]。3-メチル-2-セレノベンゾチアゾール（53）ではエピセレニド（54）を経てオレフィンに至る。一方、3-メチルベンゾチアゾール-2-チオン（55）ではエピスルフィド（56）が安定に単離される（式[59]）。

3. トランス-スチルベンオキシドをメチルアルコール（1：10）溶媒中、セレノシアン酸カリウムと65℃、2.5時間反応させると定量的にトランス-スチルベンが得られる。
セレンおよびセレン化合物を用いる有機合成

3Se+4ClF₃ → 3SeF₄+2Cl₂[61] (57)

CH₂Cl₂, CF₂Cl-CFCl₂ などの溶媒中 SeF₄ (57) は、ケトン、アルデヒドのカルボニル炭素をフルオロ化し、
geminal ジフルオロ化物を65～100%の収率で与える [62]。

R₂CO+SeF₄ → R₂CF₂+SeOF₂[62]

RCHO+SeF₄ → RHF+SeOF₂[62]

SF₄ でも同様の反応が起こる [62]。有効な条件は苛酷で、たとえばベンゾフェノンをジェニルフルオロメ
タニにするとき SF₄ では180℃, 6 時間で 97%の収率で得
られるが、SeF₄ では 40℃, 2 時間で 99%の収率である。

さて SeF₄ はビリジンと SeF₄ - N=O のような
錯体を形成する。これはカルポニルまたはアルコールの
水酸基をフルオロ化する際に生成するフッ化水素をビリジ
ンが補足するのでフルオロ化がうまく進行し有効である
(式[63a], 式[63b])。

RCOOH + SeF₄ - N=O →
O
R-C-F + SeOF₂ + C₆H₅-NOH[63a]

ROH+SeF₄ - N=O → C₆H₅-N=O+ROSeF₂

(58)[63b]

アルコールのフルオロ化はアルコキシレニウムトリ
フルオリド (58) を経て、これが熱的に分解してアルキル
フルオリドと SeOF₂ となる (式[63 b])。

3. セレンを用いる合成反応

セレンの合成化学的利用としては、セレンが酸素族に
属すことから、酸化反応への利用が考えられるが、その
実際は少なく、たとえば脂環式炭化水素と元素セレンと
との高温 (250℃以上) での脱水素芳香族炭化反応にその例
を見ることにとまる。セレンが本質的に有すると考え
られる "酸化能 (Oxidizing Ability) を利用する反応系" を
考えると、セレンの酸化力が化学的よりこのような条
件のもとで最も効果的に発揮できるかという点が重要で
ある。

3.1.1. セレン触媒を用いるアンモニアまたはアミン
と二酸化炭素-酸素の反応による尿素および尿素誘導体の
合成 尿素は現在工業的にアンモニアと二酸化炭素との
高温高圧 (180～220℃, 150～400 気圧) の反応で合成さ
れている。一方置換尿素誘導体の合成はアミンと二酸化
炭素との直接反応では一部に無理である。置換尿素誘導
体の一般合成法は一酸化炭素と塩素との反応で得られる
モノシアドアミンとの反応によってできる。それらは、
塩素化アミンを塩素化する方法 [63b]、塩化アミンを塩素化する方法 [63c]、
セレンを用いる反応 (筆者の研究) [63d] などがある。

特にセレンを用いる場合その特徴をまとめるとつき
のようになる。①反応条件が常温常圧で温和である。②
アンモニア、脂肪族、芳香族アミンなど種々の尿素誘導
体合成に適する。⑤触媒量のセレンの使用して反応
を用いたアミンに対して定量的収率で進行させることが
できる。⑥セレン化合物である活性中間体が単体される
が、その中間体と種々の求核剤、求電子剤などの反
応で非対称尿素類、カルビルメートル類、チオカルビルメ
ートル類、セレンカルビルメートル類の合成など有用な合成反応
が展開される。

たとえば、金属セレンと脂肪族-アミンの n-ブチル
アミンを非プロトン性溶媒中、室温で一気圧の一酸化
素と反応させると、セレンが反応、溶解し無色透明の均
一溶液が得られる。未反応のアミン、溶媒を減圧下留
去ると定量的に n-n-ブチルセレンールカルバニオン酸の
アミン塩 (59) が得られる (式[64])。

2 n-BuNH₃+CO+Se →

[n-BuNH₃]⁺[n-BuNH-C≡Se]⁻ THF

室温, 1 気圧

[n-BuNH₃]⁺[n-BuNH-C≡Se]⁻ O₂ →

(59)

(n-BuNH₃)₂CO+H₂O+Se[65]

(60) 100% (59)

この塩は室温で融点に安定である。潮解性があり酸素
に対し非常に反応性に富み、定量的に 1,3-ジ-n-ブチル
尿素 (60) セレン、水を与える (式[65])。
2ArNH₂ + CO + ½O₂ \rightarrow \text{Se-ET₃N} \quad \text{(66)}

本反応の活性種はセレンと一酸化炭素との反応で生成するセレン化カルボニル（SeCO）であると考えられる。

SeCOは金属セレンと一酸化炭素との高温直接反応（600〜700℃）で生成するmp〜122℃bp〜725Torrの化合物で、同族の二酸化炭素（O＝C＝O）は、極めて低の反応温度を必要とするが、一酸化炭素との二酸化炭素との二重結合が4π=2π結合より反応性が極めて高いことが予想される。このセレン化カルボニルの有機合成化学への利用は全くなされていなかった。高温反応で生成したSeCOは78℃の低温でも脂肪族、芳香族一級アミンと反応し、続いて酸素で酸化すると等モル量の尿素誘導体、セレン、水を生成する[式67]。

2RNH₂ + SeCO \rightarrow (RNH₂)₂CO + Se + H₂O ...[67]

さて式[65]に従って中間体は酸素酸化でセレンに再現する。反応系に過剰のアミン、一酸化炭素が存在すると式[64]の反応が進行する。すなわち触媒量のセレン存在下、アミン、一酸化炭素、酸素の反応で用いたアミンに対して定量的に尿素誘導体、水が生成する[式68]。

2RNH₂ + CO + ½O₂ \rightarrow (RNH₂)₂CO + H₂O ...[68]

3.1.2 反応中間体セレノールカルボニル酸アミン塩の反応：非対称尿素、カルバメートの合成 式[64]に従って得られたセレノールカルボニル酸アミン塩（59）の初濃度がアミンと同種のアミン、たとえばピリジンを反応させると非対称の尿素誘導体が高収率で得られる[式69][70]。

\[\text{Se-ET₃N} \quad \text{(59)} \]

前項で述べた尿素誘導体合成反応はアルコール中で不溶解する中間体塩のアミンとアルコールが反応すればカルバメートが生成するはずであるが、一般にアルコールの芳香族アミンより求核性が低く、この条件でカルバメート合成はない。そこで式[70]のようにアミン、セレン、三級アミンのトリエチアルアミン、一酸化炭素の反応で得られるセレノールカルボニル酸塩（62）を合成した後をアルコール分解するとカルバメートが得られた[式70][70]。

RN₃+ ET₃N + Se + CO \rightarrow (RN₃)₂(H-Se-Co) \quad \text{(62)}

\[\text{RN₃+ ET₃N + Se + CO} \rightarrow \text{(RN₃)₂(H-Se-Co)} \quad \text{(62)} \]

アルコールの代わりにナトリウムアルコキシド(NaOR)を用いるとカルバメートの収率はさらに向上する。

3.1.3. 復素環状化合物の合成 二官能基を有するアミンたとえばエタノールアミン、チオエタノールアミン類は、セレン触媒により、一酸化炭素でカルボニル化され、環状カルバメート、環状チオカルバメート（63）を与える[式71][70]。

H₂N+CH₃NH+CO + ½O₂ \rightarrow \text{Se-ET₃N} \quad \text{X=O, S, NH} \quad \text{(63)}

メチレン鎖が長くなると中間体セレノールカルバニン酸（[Et₄N]⁺[H₂Se+CH₃NH-COSe⁻]⁻）の分子内環化反応と競争して中間体ともう一分子のアミンの反応が起こり[式72], 尿素誘導体が得られる。

2HX+CH₃NH₂+CO+ ½O₂ \rightarrow \text{Et₄N-Se} \quad \text{(63)}

中間体セレノールカルボニル酸の分子内環化が有利な反応条件では高収率でヘテロ環状合物が合成される。ところで、Klaymanらはセレン化水素（H₂Se)[71]を用いてS≡S結合の−S−Hへの還元反応を報告している[式73][71]。

\[\text{PhCH₃S-SC₂Ph+H₂Se} \rightarrow \quad \text{(61)} \]

すでに述べたセレンを用いるアミンのカルボニル化反応の系はセレン化水素を副酸化する。Kochらはこの反応を利用し式式で示すジスルフィドの還元的開裂を含むアミン、一酸化炭素の反応によるチオカルバメート類の合成を報告している[式74][72]。

2RN₃+K(SSR)₂+2CO+ ½O₂ \rightarrow \quad \text{RN₃-C-SR+H₂O} \quad \text{(64)}

3.1.4. 脂肪族二級アミンからの尿素合成 脂肪族二
級アミンたとえばジメチルアミンやビリジンは3.1.1.で述べた反応で一級アミンと同様、相当する尿素の合
成が可能である。しかし、二級アミンのジェチルアミン、
セレン、二酸化炭素の反応により生成するセレノー
ルカルバミン酸（64）を酸素化したところ、対応するテ
トラエチル尿素（65）は全く得られず、ビス（N-N-ジエ
チルカルバミド）ジセレン（66）が定量的に得られ
た（式 [75]）。

2Et₂NH + CO + Se →
[Et₂N₄H₄]⁺[Et₂N-C-Se]⁻[O₃]
(64) → O₃ (Et₂N)₄CO (65)
(66)

これはセレノールカルバミン酸（64）のカルボン酸素
に対するジェチルアミンの求核攻撃がおこらず、酸素化
で生じたカルボシアレニッドラジカルのカップリング
により生じたものである。ビリジンやジジェチルアミン
からのセレノールカルバミン酸も酸化条件を適当に選べ
ば対応するビスカルボシアレニド（75）を生成する。

さてこのカルボシエチルセレニド類（67）は120°付
近で熱分解しセレンを一つ脱離してビスカルボシエチルモ
ノセレニド（68）を与える。さらに180°でモノセレニド
は分解しトトラエチル尿素（69）を与える（式 [76]）。

(R₂N-C-Se)₂ → 120° (R₂N-C-Se)Se
(67) (68)

4 置換尿素（69）の一般的な合成法としては、式 [76]
の熱分解の方法によると、過剰のアミン存在下
で熱分解を行えば収率は高い。

3.1.5. セレン触媒によるその他のアミンのカルポニ
化反応 ヒドラジン誘導体30, 31, アミノ酸エステルな
どについてもセレン触媒によるカルボニ化反応が常温
常圧の温和な条件で生成されることが明らかである。

Me₂NNH₂ + Se + CO → (Me₂NNH₂)⁺(Me₂N-NH-C-Se)⁻[O₃]
(70) (71)

これらの合成反応を示す（式 [73]）。

3.2 セレン触媒存在下、一酸化炭素、酸素とアルコ
ールの反応による炭酸エステル類の合成32, 33 アル
コールと二酸化炭素の酸エステルであるカーポネート生成
系は常温常圧ではほとんど反応に至らない（式 [79]）。

ROH + CO₂ → RO-C-OH → RO-C-OR + H₂O
(79)

同様の条件下、CO₂とRONaは反応し、ナトリウムモ
ノアリルカーポネート（76）を与えるが、ジアルキルカーポ
ネートは得られない。硫化カルボニルも同様であ
る（式 [80]）。

RONa + X=C=O → Na⁺(X-C-OR)⁻[O₃]
(76)

(RONa + ROH → (RO)₂CO + NaXH …… [80])

セレンと一酸化炭素の高温直接反応で生成したセレン
化カルボニル（SeCO）とナトリウムアルコキシドの反応
では定量的にジアルキルカーポネートが生成した（式 [81]）。

RONa + Se = C=O → ROH
(THF, 1 atm., 60°)

(RONa + NaSeH …… [81])

セレンと一酸化炭素の高温直接反応で生成したセレン
化カルボニル（SeCO）とナトリウムアルコキシドの反応
では定量的にジアルキルカーポネートが生成した（式 [81]）。

(EtONa + Se + CO → THF, 1 atm., 環境

(NaSeH = アルコールと次の平衡にあり、酸素酸化する
とセレンを与える（式 [83]）。

NaSeH + EtOH → H₂Se + 1/2 O₂ → H₂O + Se …… [83]
同様に種々のアルコールからの対応するカーボネート合成もセレン触媒によりすすめることができる（式[84]）

\[
RONa + CO + \frac{1}{2} O_2 \xrightarrow{\text{Se, ROH}} {\text{(RO)SeO}} + NaOH \ldots \ldots \ldots \ldots \ldots [84]
\]

エチレンカーボネートのような環状カーボネートの合成も高収率で行える（式[85]）

\[
\text{HO-CH}_2-\text{CH}_2-\text{ONa} + CO + \frac{1}{2} O_2 \xrightarrow{\text{Se, ROH}} \text{HO-CH}_2-\text{CH}_2-O \ldots \ldots \ldots \ldots \ldots [85]
\]

3.4 セレンを酸化剤とする反応。ホルムアミド、ジ酸エステル類のホルムアミドの酸化反応 塩基存在下とセレンは温和な条件で、酸化剤として働くことを述べた。非プロトン性溶媒のDMF（ジメチルホルムアミド）中セレンとアルコキシドアミオンとの相互作用の検討のとき、N,N-ジメチルカーバメート（77）の生成が見い出された（式[90]）

\[
\text{Me}_2\text{N-C-H+Se+NaOR} \rightarrow \text{Me}_2\text{N-C-OR+NaSeH} \ldots \ldots \ldots \ldots \ldots [90]
\]

3.5 セレン化水素の生成とその反応 3.3 のまとめで述べたようにアミン、アルコールのカルボニル化反応は、セレン化水素およびそのナトリウム塩の生成反応である（式[92]）

\[
2\text{RNH}_2 + CO + Se \rightarrow (\text{RNH})_2\text{CO} + \text{H}_2\text{Se}
\]

セレン化水素およびその塩は有機セレン化合物合成において重要である。この系にハロゲン化アルケルを共存させることによりアルキルセレナニドやジアルキルジセレニドも高収率で合成される。またニトロペンゼン類を共存させるとニトロペンゼン類はセレン化水素により還元されアミリン誘導体となる。

セレン化水素はジ酸と同程度の解離定数をもつ酸である。式[93]の反応で得たセレン化水素のトリエチルアミン塩（78）はCOによる芳香族アミンのホルムシアミドの優れた触媒となる（式[97]）

\[
2\text{ArNH}_2 + \text{CO} + \text{Et}_{3}\text{N} \rightarrow \text{Ar}=\text{CO} + 3\text{EtNH}_2
\]
セレンおよびセレン化合物を用いる有機合成

4. Organic Metal

有機化合物よりなる電荷移動錯体はその光、電気物性にもとづき有機半導体、あるいは、金属性有機物として大きな関心を集めている。1973年テトラチオフルーバレン(TTF)と電子受容体のテトラアシノ-p-キノジェン(TCNQ)との電荷移動錯体(79)が合成された(93)。その電子供与体TTFの硫黄をセレンで置換したテトラセロフルーバレン(TSF)と TCNQとの電荷移動錯体(80)(94)は室温でグラファイトに匹敵する電気伝導性を有し、-40°Cでその電気伝導度が最大となることが見出された。

\[
\begin{align*}
\text{(ArNH)}_2\text{CO} &+ [\text{Et}_2\text{NH}]^+ [\text{SeH}]^- \cdots \cdots [93] \\
\text{ArNH}_2 + \text{CO} & \rightarrow [\text{Et}_2\text{NH}]^+ [\text{SeH}]^- \\
\text{ArNH-C-H} & \cdots \cdots [94]
\end{align*}
\]

そのホルミル化の反応過程はセレノールギ酸を通るものと考えられる(式[95])。

\[
\begin{align*}
\text{Et}_3\text{N-HSe} &+ \text{CO} \rightarrow \text{Et}_3\text{N-C-SeH} \\
\text{ArNHSe} &+ \text{CO} \rightarrow \text{Et}_3\text{N-HSe} \\
\end{align*}
\]

(81)

5. おわりに

以上セレンを用いる有機合成について筆者らの研究を含め最近の進歩を紹介した。セレンには毒性がありそれの取扱いは慎重を要するが、近時セレンに抗ガン防護作用および重金属解毒作用のあることが見出されており、今後各分野での利用の期待が持たれる。

昭和52年6月11日受理

文 献

5) Chemica Scripta., 8A, (1975), The Royal Swedish Academy of Sciences
11) Smedslund, Finska Kemistamf. Medd., 41, 13 (1932)
41) P.A. Grieco, Synthesis, 1975, 67
64) D. Seebach, N. Peleties, Chem. Ber., 105, 511 (1972)
第3回炭酸ガスの化学的利用に関する
研究発表講演会

主催 高分子学会、炭酸ガスの化学的利用に関する研究会
協賛 日本化学会、有機合成化学協会、石油学会、燃料協会

日時 10月28日（金）9:30〜16:30
会場 ダイヤモンドホール（東京都千代田区霞が関1-4-2）