Synthetic Study on Neural Siglecs Ligands: Systematic Synthesis of α-Series Polysialogangliosides and Their Analogues

Hideharu Ishida and Makoto Kiso*

Department of Applied Bioorganic Chemistry.

Received August 8, 2000

Abstract: To elucidate the structure required as the ligands of neural Siglecs at the level of the sugar residue, α-series polysialogangliosides, GD1α, GT1αα and GQ1βα were successfully synthesized. In addition, a series of GD1α analogues which contain the modified sialic acids, were synthesized to elucidate the structure-activity relationship of the MAG ligands at the level of the functional group.

1. Introduction

It has been widely recognized that sialoglycoconjugates, so-called gangliosides and sialoglycoconjugates, have important roles in biological processes such as cell growth, differentiation, adhesion, and oncogenesis.1-4 In addition, the function of these molecules as ligands of animal lectins5,6 as well as receptors for viruses7 and bacteria8 has drawn much attention in connection with inflammatory or infectious diseases. Recently, a new family of carbohydrate-binding proteins, termed Siglecs (sialic acid-binding immunoglobulin superfamily lectins), has been identified.9-11 This family consists of sialoadhesin (Siglec-1), CD22 (Siglec-2), CD33 (Siglec-3), MAG (myelin-associated glycoprotein, Siglec-4a), SMP (Schwan cell myelin proteins, Siglec-4b) and Siglec 5-9. Sialoadhesin is found in bone marrow macrophages and may play a role in hemotopis. The nervous system Siglecs, MAG and SMP, are expressed on myelinating oligodendrocytes and Schwann cells. MAG is involved in myelin maintenance and in myelin-axon interactions. SMP may be the avian homologue of MAG. Although it is hypothesized that gangliosides are functional MAG ligands, the details of the structure required for the binding are still obscure. We describe herein the systematic synthesis of α-series polysialogangliosides, which are thought to be the ligands of MAG and SMP, to elucidate the structure required as Siglecs ligands. In addition, a series of analogues of the gangliosides were also designed and synthesized to get more detailed information.

2. Systematic synthesis of α-series polysialogangliosides

α-Series polysialogangliosides, such as GD1α, GT1αα and GQ1βα (see Figure 1) were defined as a new series of gangliosides containing NeuAc linked to the C-6 of GalNAc of the gangliotetraosyl backbone.11,12 They have been thought to be only a minor component,13 and little is known about their physiological functions. Because the expression of these gangliosides was restricted to a particular region and a particular population in brain tissues, it is suggested that these gangliosides may serve as ligands for some neural proteins. In this section, a systematic synthesis of α-series polysialogangliosides is described. The activity of these gangliosides as the ligands of neural Siglecs is also described.

2.1 Total synthesis of ganglioside GD1α14,15

Figure 2 shows a retrosynthetic analysis of GD1α. This ganglioside was first synthesized by route A,14 in which the GM1b oligosaccharide was first constructed and then underwent sialylation on C-6 of the GalNAc residue. The coupling of GM1b and NeuAc, however, proceeded with rather poor stereoselectivity to give an anomeric mixture which could not be readily separated. Therefore, we employed another synthetic strategy, route B15, in which GD1α was constructed by the coupling of a GM2α acceptor and a sialyl α(2–3)galactose donor (NeuAcGal).

The detailed synthesis of GD1α is shown in Scheme 1 and 2. Coupling of the suitably protected galactosamine donor 1 with the suitably protected lactose acceptor 2 was carried out.
in the presence of N-iodosuccinimide–trifluoromethanesulfonic acid (NIS–TfOH) at -30 °C to give the desired trisaccharide, which was converted into the acceptor 4 by treatment with hydrazine monohydrate and chemoselective N-acetylation. The iodonium ion promoted glycosylation of 4 with sialyl donor 5 at -30 °C in a solution of acetonitrile to give the desired tetrasaccharide in 80% (α; 65%, β; 15%) yield. Selective removal of the p-methoxyphenethylmethyl (MPM) group by treatment with ceric ammonium nitrate (CAN) and H2O afforded the key glycosyl acceptor 7 in 95% yield, which was glycosylated with sialyl(2-3)galactose donor 8 by employing dimethyl(methylthio)sulfonium triflate (DMTST) as the glycosyl promoter in dichloromethane to construct the GD1α in 80% yield. The oligosaccharide obtained was converted into the final compound, ganglioside GD1α, by the following procedure as shown in Scheme 2: i) replacement of benzyl with acetyl groups, ii) removal of the 2-(trimethylsilyl)ethyl (SE) group by treatment with trifluoroacetic acid (TFA), iii) introduction of trichloroacetimidate as a leaving group, iv) coupling with the suitably protected azidosphingosine acceptor 13, v) conversion of azido into a stearoylamino group, and vi) the complete deprotection of all protecting groups.

2.2 Total synthesis of ganglioside GT1α

Figure 3 shows a retrosynthetic analysis of GT1α, in which the heptasaccharide of GT1α was divided into the sialyl(2-3)galactose donor and the GD2α acceptor. We employed two synthetic strategies to construct the key intermediate GD2α. In route A, we selected the suitably protected GM2α derivative as a key glycosyl acceptor, which served as the intermediate also for GQ1b (see 2.3). Strategy B employs the efficient coupling of the NeuAc–Gal donor
and the GM3 acceptor as a key reaction. Due to the low yield of the glycosylation of the GM2α acceptor with the sialyl donor (NeuAc), a key reaction of route A, route B is recommended for the practical synthesis of GT1αβ.

Figure 3. Retrosynthetic analysis of GT1αβ.

Figure 3 shows the detailed synthesis by route B. The galactosamine acceptor 16 in which the amino group was protected with phthaloyl was glycosylated with sialyl donor 5 in the presence of NIS-TfOH at −30 °C to afford the desired sialyl(2−6)galactose 17 in 80% yield; no β-glycoside was isolated. Removal of the tert-butyldimethylsilyl (TBDMS) group in 17 (83%) and trichloroacetimidate formation (99%) yielded the disaccharide donor 18, which was coupled with sialyl(2−3)lactose derivative 19 to give the desired GM2α pentasaccharide (76%). The phthalimido group was then converted to an acetamido group. The methyl ester had to be converted to the free carboxyl (21) before the removal of phthaloyl group and re-esterified (22) after the N-acetylation, to prevent the by-product formation. The physicochemical properties and spectral data of 22 were identical with those of 22 separately synthesized by route A.

The isopropylidene group in 22 was cleaved by treatment with 80% acetic acid to give 23 in 85% yield. Regioselective glycosylation of 23 with sialyl(2−3)galactose donor 8 in the presence of DMTST gave the protected GT1αβ heptasaccharide 24 in 95% yield. The oligosaccharide obtained was converted into the final compound, ganglioside GT1αβ, by essentially the same procedure as described for ganglioside GD1αβ (see 2.1).

The structure of the molecule was characterized by FAB MS (negative ion mode) and 1H NMR spectrometry. The molecular ion species of the synthetic GT1αβ were clearly detected at m/z 2172.04 [M−Na]− (C95H162N5NaO47 MW, Exact 2171.0236, Ave. 2172.3161), 2150.06, 2149.07 [M−2Na]−, and 2127.06 [M−3Na]−, accompanied with significant fragment ions at m/z 1858.0, 1857.0 [M−2Na−NeuAc]−, 1696.0 [M−2Na−NeuAc−Gal]−, and 1545.0 [M−3Na−2NeuAc]−, providing unambiguous evidences for the structure assigned. The characteristic fragment ions at m/z 888.7 [lactosylceramide]−, 726.6 [glucosylceramide]−, and 564.6 [ceramide]−, provide further evidence for the assigned structure including the ceramide moiety. In the 1H NMR spectrum (500MHz) of the synthetic GT1αβ in DMSO-d6-D2O, the three characteristic H-3eq of NeuAc (δ 2.73−2.89), four anomeric protons due to the β glycosidic linkages in the GgOse4 core structure (δ 4.15, 4.30, 4.43 and 4.84), and two olefinic protons of ceramide (δ 5.32 and 5.75) were clearly observed. In addition, TLC−immunostaining of the synthet-

2.3 Total synthesis of ganglioside GQ1βz

Ganglioside GQ1βz, which has the most complex struc-
tute amongst the α-series polysialogangliosides, was successfully synthesized by employing the GT2bα acceptor as a key intermediate, which was prepared by successive sialylation of the gangliotriaosyl acceptor (Figure 4 route A). When route B was employed as in the synthesis of GT1α, the conversion of phthalimido to an acetamido group was rather tedious and difficult because of the presence of the sialylα(2-8) sialyl residue.

The condensation of the gangliotriaosyl acceptor 25 with the sialyl donor 5 in the acetonitrile in the presence of NIS-TfOH gave the α-glycoside 26 solely at the desired position in 45% yield. The regio-chemistry was deduced from the 1H NMR spectrum of the acetylated compound; the observed chemical shifts of the galactose residue for H-3 (δ 4.94) indicate the glycosylated position to be HO-6 of the GaINAc residue. The glycosylation of the tetrasaccharide acceptor 26 with the sialylα(2-8)sialyl donor 27 under the same conditions as described for 26 gave the expected hexasaccharide derivative 28 in 42% yield. The monomeric sialic acid was introduced to the same position in a poor yield in the same condition. Taking these results into the consideration, one can say that the sialylα(2-8)sialyl donor 27 served as a more reactive glycosyl donor than the monomeric sialyl donor 5. The hexasaccharide acceptor 29 was formed by removal of the isopropylidene group, and glycosylated with the sialylα(2-3) galactosyl donor 8 in the presence of DMTST to give the desired octasaccharide 30 in 85% yield. The octasaccharide was also transformed into the final compound, ganglioside GQ1bα, by the same procedure as described for GD1α as well as GT1α.

Scheme 4

2.4 Binding of α-series polysialogangliosides to MAG, SMP and sialoadhesin

As shown in the Table, MAG and SMP displayed avidity for α-series polysialogangliosides. The most complex ganglioside GQ1bα was ~10-fold more potent in supporting MAG- and SMP-mediated adhesion than was the closely related major brain ganglioside lacking the α2,6-NeuAc residue, GT1b (Figure 5). The other α-series polysialogangliosides tested, GD1α and GT1α, displayed more potency compared with GD1α and GT1b. In contrast to the neural Siglecs, MAG and SMP, α-series gangliosides and GD1α were equally potent in supporting sialoadhesin-mediated cell adhesion. These data indicate that MAG and SMP require a terminal “NeuAcα(2 → 3)” determinant as the primary structural requirement for binding but that additional (secondary) sialic acids on the same core greatly enhance binding. The relative placement of the secondary sialic acids appear to be a key factor, with the NeuAcα(2 → 6)GalNAc determinant preferred.

Previously, we demonstrated that any chemical modification of the terminal sialic acid, termed as the primary sialic acid, abrogated MAG binding, indicating the whole structure of the terminal sialic acid is required for the binding. However, the structural requirement on the internal sialic acid at C-6 of the GalNAc residue, termed as the secondary sialic acid, has not been elucidated. In this section, we undertook the systematic synthesis of ganglioside GD1a analogues carrying N-acetyl-deoxyneuraminic acids at C-6 of the GalNAc residue and examined their binding to MAG in a study of the structure–activity relationship of neural Siglecs ligand at the level of the functional group.

3.1 Systematic synthesis of ganglioside GD1α analogues carrying modified sialic acids

For the systematic synthesis of a series of GD1α analogues we employed the strategy in which GM1b oligosaccharide was first constructed and then sialylated on C-6 of GalNAc (discussed in 2.1).

A series of phenyl 2-thioglycosides of N-acetyldesoxyneuraminic acids (31–33), which were prepared from the corresponding 2-(trimethylsilyl)ethyl glycoside of N-acetylenuraminic acid by our previous procedure with some improvements, were each coupled with the suitably protected GM1b pentasaccharide in the presence of NIS-TfOH in acetonitrile at -20 °C to give the desired NeuAc(2-6)-hexasaccharide (35-37, 30–40%) accompanied by NeuAcβ(2-6) isomers (20–25%). The most significant signals in the 1H-NMR spectra of 35 were a one-proton doublet of doublets (J gem = 12.8, J 3eq,4 = 4.8Hz) at δ 2.56 due to H-3eq of the newly introduced α(2-6)-linked sialyl residue, and another one-proton doublet of doublets (J gem = 12.6, J 3eq,4 = 4.6Hz) at δ 2.43 due to H-3eq of the α(2-3)-linked terminal sialyl residue. The protected hexasaccharides 35–37 were transformed into the corresponding gangliosides, by the same procedure as described for the synthesis of GD1α (see 2.1).

Scheme 5

3.2 Binding of MAG and SMP to ganglioside GD1α analogues

We tested the role of α(2-6) NeuAc residue using synthetic GD1α analogues. As shown in the Table, GD1α analogues bearing a 7-, 8-, or 9-deoxylic acid linked to GalNAc were comparable with the parent GD1α in supporting MAG and SMP binding and were much more potent than GM1b. This result led us to test the possibility that the secondary sialic acid α(2-6)-linked to the GalNAc residue may be replaced by other anionic substituents, as demonstrated in
the study on selectin ligands, in contrast to the primary sialic acid (2-3)-linked to the Gal residue. In fact, structures bearing a sialic group in place of the GD1a secondary NeuAc residue displayed equivalent enhanced affinity (GM1b III 5 sulfate) with its NeuAc-containing compound GD1a.

4. Conclusion

In this paper, we have described the results of a study to elucidate the structure required as the ligands of neural Siglecs, mainly an organic synthetic approach, at the level of the sugar residue as well as the functional group. MAG is thought to be implicated in myelin–neuron interactions and, in particular, has been shown to be a neurite outgrowth inhibitor; therefore, detailed knowledge of the carbohydrate ligands that support MAG binding may provide opportunities for design of methodology in the control of neurite outgrowth and myelination.

Acknowledgments

The authors wish to thank Dr. Katsumi Kakinuma, Tokyo Institute of Technology, and Dr. Yukishige Ito, The Institute of Physical and Chemical Research (RIKEN), for giving us the opportunity to contribute to the present issue. This research was supported in part by grants from the Ministry of Education, Science and Culture of Japan.

References